Value added and its components by activity, ISIC rev4, SNA93 - SNA_TABLE6A_SNA93

Data - OECD

Nobs

Data Structure

id description
LOCATION Country
TRANSACT Transaction
ACTIVITY Activity
MEASURE Measure
TIME Year
OBS_VALUE Observation Value
TIME_FORMAT Time Format
OBS_STATUS Observation Status
UNIT Unit
POWERCODE Unit multiplier
REFERENCEPERIOD Reference period

LOCATION

TRANSACT

id label
P1A Output
VA4 6A--Value added and its components by activity, ISIC rev4
P2A Intermediate consumption
D1A Compensation of employees
B1GA Gross value added
D11A of which: gross wages and salaries
K1A Consumption of fixed capital
B2G_B3GA Gross operating surplus and gross mixed income
B1_GE Gross domestic product (expenditure approach)
B2N_B3NA Net operating surplus and net mixed income
D29_D39A Other taxes less other subsidies on production

ACTIVITY

MEASURE

id label
C Current prices
V Constant prices, national base year
VOB Constant prices, OECD base year

TIME_FORMAT

id label
P1Y Annual
P1M Monthly
P3M Quarterly
P6M Half-yearly
P1D Daily

Ex 1A: VA in Manuf.

Code
SNA_TABLE6A_SNA93 %>%
  filter(TRANSACT %in% c("B1GA", "B1_GE"),
         ACTIVITY %in% c("VC", "VTOT"),
         MEASURE == "C") %>%
  left_join(SNA_TABLE6A_SNA93_var %>% pluck("LOCATION"), by = c("LOCATION" = "id")) %>%
  rename(LOCATION_desc = label) %>%
  year_to_date %>%
  mutate(VARIABLE = paste0(TRANSACT, "_", ACTIVITY)) %>%
  select(VARIABLE, LOCATION, LOCATION_desc, date, obsValue) %>%
  spread(VARIABLE, obsValue) %>%
  mutate(value = B1GA_VC / B1_GE_VTOT) %>%
  filter(!is.na(value)) %>%
  group_by(LOCATION, LOCATION_desc) %>%
  summarise(year1 = first(year(date)),
            value1 = first(value),
            year2 = last(year(date)),
            value2 = last(value)) %>%
  mutate_at(vars(value1, value2), funs(paste0(round(100*., digits = 1), " %"))) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Ex 1B: VA in Manuf. (Chile, Japan, New Zealand)

Code
SNA_TABLE6A_SNA93 %>%
  filter(TRANSACT %in% c("B1GA", "B1_GE"),
         ACTIVITY %in% c("VC", "VTOT"),
         LOCATION %in% c("JPN", "CHL", "NZL"),
         MEASURE == "C") %>%
  left_join(SNA_TABLE6A_SNA93_var %>% pluck("LOCATION"), by = c("LOCATION" = "id")) %>%
  rename(LOCATION_desc = label) %>%
  year_to_date %>%
  mutate(VARIABLE = paste0(TRANSACT, "_", ACTIVITY)) %>%
  select(VARIABLE, LOCATION_desc, date, obsValue) %>%
  spread(VARIABLE, obsValue) %>%
  mutate(value = B1GA_VC / B1_GE_VTOT) %>%
  ggplot() + 
  geom_line(aes(x = date, y = value, color = LOCATION_desc, linetype = LOCATION_desc)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  theme_minimal() +
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.2, 0.5),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-7, 26, 1),
                     labels = scales::percent_format(accuracy = 1)) +
  ylab("Value Added in Manufacturing (% of GDP)") + xlab("")