Non-financial accounts by economic sector - QASA_TABLE801

Data - OECD

Code
load_data("oecd/QASA_TABLE801.RData")
load_data("oecd/QASA_TABLE801_var.RData")

Nobs - Javascript

Code
QASA_TABLE801 %>%
  left_join(QASA_TABLE801_var$TRANSACTION %>% rename(TRANSACTION_desc = label), by = c("TRANSACTION" = "id")) %>%
  group_by(TRANSACTION, TRANSACTION_desc, SECTOR, MEASURE, TIME_FORMAT, ADJUSTED) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

SECTOR

Code
QASA_TABLE801_var$SECTOR %>%
  {if (is_html_output()) print_table(.) else .}
id label
S1 Total economy
S11 Non-financial corporations
S11DO Domestically controlled non-financial corporations
S11001 Public non financial corporations
S11002 National private non financial corporations
S12 Financial corporations
S12K Monetary financial institutions (MFI)
S12P Other financial institutions (Financial corporations other than MFIs, insurance corporations and pension funds)
S12Q Insurance corporations and pension funds
S13 General government
S14_S15 Households and non-profit institutions serving households
S14 Households
S15 Non-profit institutions serving households
SN Not sectorized
S2 Rest of the world

MEASURE

Code
QASA_TABLE801_var$MEASURE %>%
  {if (is_html_output()) print_table(.) else .}
id label
CAR Current prices, annual levels
CQR Current prices, quarterly levels
PER Persons
HRS Hours worked

Data Structure

Code
QASA_TABLE801_var$VAR_DESC %>%
  {if (is_html_output()) print_table(.) else .}
id description
LOCATION Country
TRANSACTION Transaction
SECTOR Sector
MEASURE Measure
ADJUSTED Adjusted
TIME Period & Frequency
OBS_VALUE Observation Value
TIME_FORMAT Time Format
OBS_STATUS Observation Status
UNIT Unit
POWERCODE Unit multiplier
REFERENCEPERIOD Reference period

TRANSACTION

Code
QASA_TABLE801_var$TRANSACTION %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

ADJUSTED

Code
QASA_TABLE801_var$ADJUSTED %>%
  {if (is_html_output()) print_table(.) else .}
id label
NSA Not seasonally adjusted
SA Seasonally adjusted

Ex 1: Net capital formation (% of GDP)

Code
QASA_TABLE801 %>%
  # K1PAY: Consumption of fixed capital
  # P5PAY: Gross capital formation
  # B1GPAY: Gross domestic product / Gross value added
  filter(TRANSACTION %in% c("P5PAY", "K1PAY", "B1GPAY"), 
         SECTOR == "S1",
         MEASURE == "CQR",
         TIME_FORMAT == "P1Y", 
         ADJUSTED == "NSA") %>%
  left_join(QASA_TABLE801_var$LOCATION, by = c("LOCATION" = "id")) %>%
  select(Country = label, TRANSACTION, obsTime, obsValue) %>%
  filter(substr(obsTime, 6, 6) != "Q") %>%
  arrange(Country, obsTime, TRANSACTION) %>%
  spread(TRANSACTION, obsValue) %>%
  group_by(Country, obsTime) %>%
  summarise(obsValue = (P5PAY - K1PAY) / B1GPAY) %>%
  group_by(Country) %>%
  summarise(year_first = first(obsTime),
            value_first = first(obsValue),
            year_last = last(obsTime),
            value_last = last(obsValue)) %>%
  na.omit %>%
  mutate_at(vars(value_first, value_last), 
            funs(ifelse(!is.na(.), paste0(round(100*., digits = 1), " %"), .))) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}