Code
LFS_SEXAGE_I_C %>%
left_join(LFS_SEXAGE_I_C_var$SEX, by = "SEX") %>%
group_by(SEX, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| SEX | Sex | Nobs |
|---|---|---|
| MW | All persons | 104552 |
| MEN | Men | 104280 |
| WOMEN | Women | 103509 |
Data - OECD
LFS_SEXAGE_I_C %>%
left_join(LFS_SEXAGE_I_C_var$SEX, by = "SEX") %>%
group_by(SEX, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| SEX | Sex | Nobs |
|---|---|---|
| MW | All persons | 104552 |
| MEN | Men | 104280 |
| WOMEN | Women | 103509 |
LFS_SEXAGE_I_C %>%
left_join(LFS_SEXAGE_I_C_var$AGE, by = "AGE") %>%
group_by(AGE, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()LFS_SEXAGE_I_C %>%
left_join(LFS_SEXAGE_I_C_var$SERIES, by = "SERIES") %>%
group_by(SERIES, Series) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| SERIES | Series | Nobs |
|---|---|---|
| PER_P | Share of population | 80553 |
| PER_E | Share of employment | 79701 |
| PER_L | Share of labour force | 79698 |
| PER_U | Share of unemployment | 72389 |
LFS_SEXAGE_I_C %>%
left_join(LFS_SEXAGE_I_C_var$FREQUENCY, by = "FREQUENCY") %>%
group_by(FREQUENCY, Frequency) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| FREQUENCY | Frequency | Nobs |
|---|---|---|
| A | Annual | 312341 |
LFS_SEXAGE_I_C %>%
left_join(LFS_SEXAGE_I_C_var$COUNTRY, by = "COUNTRY") %>%
group_by(COUNTRY, Country) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Country))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}LFS_SEXAGE_I_C %>%
group_by(obsTime) %>%
summarise(Nobs = n()) %>%
arrange(desc(obsTime)) %>%
print_table_conditional()