source | dataset | .html | .qmd | .RData |
---|---|---|---|---|
oecd | FIN_IND_FBS | 2024-09-11 | 2024-06-14 | 2023-09-09 |
Financial Indicators – Stocks
Data - OECD
Info
Last
obsTime | Nobs |
---|---|
2022 | 723 |
INDICATOR
Code
%>%
FIN_IND_FBS left_join(FIN_IND_FBS_var$INDICATOR, by = "INDICATOR") %>%
group_by(INDICATOR, Indicator) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
LOCATION
Code
%>%
FIN_IND_FBS left_join(FIN_IND_FBS_var$LOCATION, by = "LOCATION") %>%
group_by(LOCATION, Location) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Location))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
Ex 1: Financial Net Worth of households and NPISHs, as a percentage of NDI
Code
%>%
FIN_IND_FBS filter(INDICATOR %in% c("LBF90S14_S15NDI"),
%in% c("DNK", "FRA", "USA")) %>%
LOCATION left_join(FIN_IND_FBS_var$LOCATION, by = "LOCATION") %>%
year_to_enddate() %>%
ggplot() + theme_minimal() +
geom_line(aes(x = date, y = obsValue/100, color = Location, linetype = Location)) +
scale_color_manual(values = viridis(5)[1:4]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.9),
legend.title = element_blank()) +
scale_y_continuous(breaks = 0.01*seq(0, 1000, 50),
labels = scales::percent_format(accuracy = 1)) +
ylab("% of NDI") + xlab("")