Code
i_g("bib/ipp/prestations-sociales.png")
Data - IPP
i_g("bib/ipp/prestations-sociales.png")
%>%
ret_etat print_table_conditional
date | taux_employeur_explicite.ati | taux_employeur_explicite.pensions_civils | taux_employeur_explicite.pensions_militaires | taux_implicite |
---|---|---|---|---|
2025-08-27 | 0.0032 | 0.7428 | 1.2607 | NA |
2014-01-01 | 0.0032 | 0.7428 | 1.2607 | NA |
2013-12-01 | 0.0032 | 0.4428 | 1.2607 | NA |
2013-01-01 | 0.0032 | 0.7428 | 1.2607 | NA |
2012-01-01 | 0.0033 | 0.6859 | 1.2155 | NA |
2011-01-01 | 0.0033 | 0.6539 | 1.1414 | NA |
2010-01-01 | 0.0033 | 0.6214 | 1.0863 | NA |
2009-12-01 | 0.0032 | 0.4014 | 1.0839 | NA |
2009-01-01 | 0.0032 | 0.6014 | 1.0839 | NA |
2008-01-01 | 0.0031 | 0.5571 | 1.0350 | NA |
2007-01-01 | 0.0031 | 0.5074 | 1.0105 | NA |
2006-01-01 | 0.0030 | 0.4990 | 1.0000 | NA |
2005-01-01 | NA | NA | NA | 0.594 |
2004-01-01 | NA | NA | NA | 0.568 |
2003-01-01 | NA | NA | NA | 0.527 |
2002-01-01 | NA | NA | NA | 0.523 |
2001-01-01 | NA | NA | NA | 0.487 |
2000-01-01 | NA | NA | NA | 0.492 |
1999-01-01 | NA | NA | NA | 0.486 |
1997-01-01 | NA | NA | NA | 0.474 |
1996-01-01 | NA | NA | NA | 0.462 |
1995-01-01 | NA | NA | NA | 0.486 |
%>%
ret_etat select(date,
`Taux pensions civiles` = taux_employeur_explicite.pensions_civils,
`Taux pensions militaires` = taux_employeur_explicite.pensions_militaires) %>%
mutate(date = as.Date(date)) %>%
add_row(date = as.Date("2022-09-05"),
`Taux pensions civiles` = 0.7428,
`Taux pensions militaires` = 1.2607) %>%
mutate(date = as.Date(date)) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
na.omit ggplot() + geom_line(aes(x = date, y = value, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 5),
labels = percent_format(acc = 1)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme(legend.title = element_blank(),
legend.position = c(0.7, 0.8)) +
ylab("Taux employeur explicite") + xlab("")
%>%
ret_etat select(date,
`Taux pensions civiles` = taux_employeur_explicite.pensions_civils,
`Taux pensions militaires` = taux_employeur_explicite.pensions_militaires,
`Taux implicite` = taux_implicite) %>%
mutate(date = as.Date(date)) %>%
add_row(date = as.Date("2022-09-05"),
`Taux pensions civiles` = 0.7428,
`Taux pensions militaires` = 1.2607,
`Taux implicite` = NA) %>%
mutate(date = as.Date(date)) %>%
arrange(desc(date)) %>%
gather(variable, value, -date) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
%>%
na.omit mutate(value = ifelse(variable == "Taux implicite" & date >= as.Date("2006-01-01"), NA, value)) %>%
ggplot() + geom_line(aes(x = date, y = value, color = variable)) + theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-200, 200, 5),
labels = percent_format(acc = 1)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.8)) +
ylab("Taux employeur explicite") + xlab("") +
geom_hline(yintercept = 0.15, linetype = "dashed")
%>%
rmi_m if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
rmi_m select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
scale_color_manual(values = viridis(8)[1:7]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI en euros") + xlab("")
%>%
rsa_m if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
rsa_m select(date, montant_base_rsa) %>%
gather(variable, value, -date) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
ggplot() + geom_line(aes(x = date, y = value)) +
scale_color_manual(values = viridis(8)[1:7]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RSA en euros") + xlab("")
%>%
rsa_m bind_rows(rmi_m) %>%
select(date, montant_base_rsa,
%>%
montant_base_rmi, date_parution_jo) if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
rmi_m select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI / RSA en euros") + xlab("")
%>%
rmi_m select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
%>%
ungroup arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 700, 10)) +
ylab("Montant du RMI / RSA (100 = 1992)") + xlab("")
%>%
rmi_m select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1992-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI / RSA en euros") + xlab("")
%>%
rmi_m select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1992-01-01")) %>%
%>%
ungroup arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 700, 10)) +
ylab("Montant du RMI / RSA (100 = 1992)") + xlab("")
%>%
rmi_m select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1996-01-01")) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(300, 700, 10),
labels = dollar_format(accuracy = 1, suffix = " €", prefix = "")) +
ylab("Montant du RMI / RSA en euros") + xlab("")
%>%
rmi_m select(date, montant_base_rmi) %>%
gather(variable, value, -date) %>%
bind_rows(rsa_m %>%
select(date, montant_base_rsa) %>%
gather(variable, value, -date)) %>%
filter(!is.na(value)) %>%
mutate(value = ifelse(value >= 2000, value/6.55957, value)) %>%
group_by(variable) %>%
complete(date = seq.Date(min(date), max(date), by = "day")) %>%
fill(value) %>%
mutate(Variable = ifelse(variable == "montant_base_rmi", "RMI (avant le 1er juin 2009)",
"RSA (après le 1er juin 2009)")) %>%
filter(date >= as.Date("1996-01-01")) %>%
%>%
ungroup arrange(date) %>%
mutate(value = 100*value/value[1]) %>%
ggplot() + geom_line(aes(x = date, y = value, color = Variable)) +
scale_color_manual(values = viridis(3)[1:2]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
theme(legend.position = c(0.3, 0.8),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(100, 700, 10)) +
ylab("Montant du RMI / RSA (100 = 1996)") + xlab("")