DOWNLOAD_TIME |
---|
2023-05-13 |
7.101 – Compte des sociétés non financières (S11) (En milliards d’euros)
Data - INSEE
Info
DOWNLOAD_TIME
Last
Code
%>%
t_7101 group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
head(1) %>%
print_table_conditional()
year | Nobs |
---|---|
2021 | 64 |
Sources
7.101 – Compte des sociétés non financières (S11) (En milliards d’euros):
year
Code
%>%
t_7101 group_by(year) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
gdp
Code
<- `CNA-2014-PIB` %>%
gdp %>%
year_to_date filter(OPERATION == "PIB",
%in% c("EUR2014", "EUROS_COURANTS")) %>%
UNIT_MEASURE select(date, UNIT_MEASURE, OBS_VALUE) %>%
mutate(OBS_VALUE = OBS_VALUE / 1000,
UNIT_MEASURE = paste0("PIB_", UNIT_MEASURE)) %>%
spread(UNIT_MEASURE, OBS_VALUE) %>%
arrange(desc(date)) %>%
transmute(year = paste0(year(date)),
gdp = PIB_EUROS_COURANTS)
%>%
gdp print_table_conditional()
Table en 2019
Code
%>%
t_7101 filter(year == "2020") %>%
select(-year) %>%
mutate(value = round(value) %>% paste0(" Mds€")) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Rémunération des salariés, salaires et traitements
Code
%>%
t_7101 filter(variable %in% c("D11", "D1", "D12")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 ggplot(.) + theme_minimal() + ylab("Sociétés Non Financières (% du PIB)") + xlab("") +
geom_line(aes(x = date, y = value/gdp, color = paste0(Variable, " - Line ", line))) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.4)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 2),
labels = scales::percent_format(accuracy = 1))
Revenus Mixes des Entreprises
Code
%>%
t_7101 filter(variable %in% c("B2g", "B2n")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 ggplot(.) + theme_minimal() + ylab("% du PIB") + xlab("") +
geom_line(aes(x = date, y = value/gdp, color = paste0(Variable, " - Line ", line), linetype = Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.2, 0.9)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1))
Dividendes
Code
%>%
t_7101 filter(variable %in% c("D42", "D421")) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value/gdp, color = paste0(Variable, " - Line ", line), linetype = Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.6)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("% du PIB") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1))
Tous
1950-
Code
%>%
t_7101 filter(line %in% c(23, 30, 19)) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value/gdp, color = paste0(Variable, " - Ligne ", line), linetype = Variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.6)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("% du PIB") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1))
1975-
Code
%>%
t_7101 filter(line %in% c(23, 30, 19)) %>%
left_join(gdp, by = "year") %>%
%>%
year_to_date2 group_by(date) %>%
filter(n() == 3) %>%
mutate(Variable = case_when(line == 23 ~ "Revenus reçus des sociétés (Ressources)",
== 30 ~ "Revenus versés des sociétés (Emplois)",
line ~ Variable)) %>%
T ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = value/gdp, color = paste0(Variable, " - Ligne ", line))) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("% du PIB") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
labels = scales::percent_format(accuracy = 1))
Replication
Exemple 1
Code
%>%
t_7101 filter(line %in% c(23, 30, 19)) %>%
select(line, year, value) %>%
%>%
year_to_date2 spread(line, value) %>%
transmute(date,
`Revenus versés/(Revenus reçus + ENE)` = `30`/(`23` + `19`),
`(Revenus versés - Revenus reçus)/ENE` = (`30` - `23`)/`19`) %>%
gather(variable, value, -date) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = scales::percent_format(accuracy = 1),
limits = c(0, 0.8))
Exemple 2
Code
%>%
t_7101 filter(line %in% c(24, 31, 19)) %>%
select(line, year, value) %>%
%>%
year_to_date2 spread(line, value) %>%
%>%
na.omit ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = `31`/(`24` + `19`))) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.6)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
ylab("%") + xlab("") +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = scales::percent_format(accuracy = 1))
Exemple 3
Code
%>%
t_7101 filter(line %in% c(23, 30, 20)) %>%
select(line, year, value) %>%
%>%
year_to_date2 spread(line, value) %>%
transmute(date,
`Revenus versés/(Revenus reçus + EBE)` = `30`/(`23` + `20`),
`(Revenus versés - Revenus reçus)/EBE` = (`30` - `23`)/`20`) %>%
%>%
na.omit gather(variable, value, -date) %>%
ggplot(.) + theme_minimal() + ylab("") + xlab("") +
geom_line(aes(x = date, y = value, color = variable)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.9)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 5),
labels = scales::percent_format(accuracy = 1),
limits = c(0, 0.5))