6.202 – Valeur ajoutée brute par branche en volume aux prix de l année précédente chaînés (En milliards d’euros 2014) - t_6202

Data - INSEE

year

Simplifié - 38 postes

Code
t_6202 %>%
  group_by(year) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

Détaillé - 88 postes

Code
t_6202d %>%
  group_by(year) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
year Nobs
1999 111
2000 111
2001 111
2002 111
2003 111
2004 111
2005 111
2006 111
2007 111
2008 111
2009 111
2010 111
2011 111
2012 111
2013 111
2014 111
2015 111
2016 111
2017 111
2018 111
2019 111

2019

Simplifié - 38 postes

Code
t_6202 %>%
  filter(year == "2020") %>%
  select(-year) %>%
  mutate(share = round(100*value/ value[sector == "TOTAL"], 1)) %>%
  mutate(value = round(value) %>% paste0(" Mds€")) %>%
  arrange(-share) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Détaillé - 88 postes

Code
t_6202d %>%
  filter(year == "2019") %>%
  mutate(share = round(100*value/ value[sector == "TOTAL"], 1)) %>%
  mutate(value = round(value) %>% paste0(" Mds€")) %>%
  arrange(-share) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Branches Pourcentage

Industries alimentaires, Produits métalliques, automobile

Code
t_6202d %>%
  filter(sector %in% c("A88.10", "A88.25", "A88.29", "TOTAL")) %>%
  year_to_date2() %>%
  group_by(date) %>%
  mutate(value = value/value[sector == "TOTAL"]) %>%
  filter(!(sector == "TOTAL")) %>%
  ggplot() + theme_minimal() + ylab("%") + xlab("") +
  geom_line(aes(x = date, y = value, color = Sector, linetype = Sector)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.54, 0.55),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(0, 250, 0.1),
                labels = percent_format(accuracy = .1))