Données harmonisées des recensements de 1968 à 2015 - rp19682015

Data - INSEE

Varlist

Code
rp19682015_varlist %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

AN_RECENS

Code
AN_RECENS %>%
  {if (is_html_output()) print_table(.) else .}
AN_RECENS AN_RECENS_desc
1968 Recensement de 1968
1975 Recensement de 1975
1982 Recensement de 1982
1990 Recensement de 1990
1999 Recensement de 1999
2010 Recensement de 2010
2015 Recensement de 2015

CSP

Code
CSP %>%
  {if (is_html_output()) print_table(.) else .}
CSP CSP_desc
1 Agriculteurs
2 Artisans-commerçants-chefs d'entreprises
3 Cadres et professions intellectuelles supérieures
4 Professions intermédiaires
5 Employés
6 Ouvriers
8 Anciens actifs
9 Inactifs et chômeurs n'ayant jamais travaillé

DEP

Code
DEP %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

DIPL

Code
DIPL %>%
  {if (is_html_output()) print_table(.) else .}
DIPL DIPL_desc
A aucun diplôme ou au mieux BEPC, brevet des collèges, DNB
B CAP, BEP
C Baccalauréat (général, techno, pro)
D Diplôme d'études supérieures
* Personnes de moins de 15 ans (17 ans pour le RP 1975) ou étudiants, élèves

NATIO

Code
NATIO %>%
  {if (is_html_output()) print_table(.) else .}
NATIO NATIO_desc
0 Français de naissance
1 Français par acquisition
1IT Italiens
1ES Espagnols
1PT Portugais
2** Autres nationalités d'Europe
3DZ Algériens
3MA Marocains
3TN Tunisiens
3** Autres nationalités d'Afrique
4TR Turcs
*** Autres nationalités

NES4

Code
NES4 %>%
  {if (is_html_output()) print_table(.) else .}
NES4 NES4_desc
1 Agriculture
2 Industrie
3 BTP
4 Tertiaire
9 Inactifs ou chômeurs

REG

Code
REG %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

SEXE

Code
SEXE %>%
  {if (is_html_output()) print_table(.) else .}
SEXE Sexe
0 Ensemble
1 Hommes
2 Femmes
3 Filles
4 Garçons
SO Sans objet

STAT_CONJ

Code
STAT_CONJ %>%
  {if (is_html_output()) print_table(.) else .}
STAT_CONJ STAT_CONJ_desc
A Marié
B Non marié

TYP_ACT

Code
TYP_ACT %>%
  {if (is_html_output()) print_table(.) else .}
TYP_ACT TYP_ACT_desc
1 Actifs ayant un emploi
2 Chômeurs
3 Étudiants, élèves
5 Anciens actifs
6 Autres inactifs

Ouvriers Map

1968

Code
map1968 <- recensement_aggregate %>%
  filter(NES4 == "6",
         an_recens == "1968") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part des ouvriers (%)\n") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1968

Industry Map

1968

Code
map1968 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1968") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part de l'industrie (%)\n") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1968

1975

Code
map1975 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1975") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part de l'industrie (%)\n1975") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1975

1982

Code
map1982 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1982") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part de l'industrie (%)\n1982") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1982

1990

Code
map1990 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1990") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part de l'industrie (%)\n1990") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1990

1999

Code
map1999 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1999") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part de l'industrie (%)\n1999") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1999

2010

Code
map2010 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "2010") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part de l'industrie (%)\n2010") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map2010

2015

Code
map2015 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "2015") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Oranges",
                    name="Part de l'industrie (%)\n2015") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map2015

1968 VS 2015

Code
ggarrange(map1968, map2015, 
          ncol=2, nrow = 1, 
          legend = "bottom",
          common.legend = TRUE,
          labels = c("1968", "2015"))

1968, 1975, 1982, 1990, 1999, 2010, 2015

Code
ggarrange(map1968, map1975, map1982, map1990, map1999, map2010, map2015, 
          ncol=4, nrow = 2,
          common.legend = T,
          legend="bottom",
          labels = c("1968", "1975", "1982", "1990", "1999", "2010", "2015"))

Industry Map (viridis)

1968

Code
map1968 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1968") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  rename(`Part de l'industrie (%)` = value) %>%
  ggplot(., aes(long, lat, group = group, fill = `Part de l'industrie (%)`)) +
  scale_fill_viridis_d(direction = -1) + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1968

1975

Code
map1975 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1975") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  rename(`Part de l'industrie (%)` = value) %>%
  ggplot(., aes(long, lat, group = group, fill = `Part de l'industrie (%)`)) +
  scale_fill_viridis_d(direction = -1) + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1975

1982

Code
map1982 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1982") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  rename(`Part de l'industrie (%)` = value) %>%
  ggplot(., aes(long, lat, group = group, fill = `Part de l'industrie (%)`)) +
  scale_fill_viridis_d(direction = -1) + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1982

1990

Code
map1990 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1990") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  rename(`Part de l'industrie (%)` = value) %>%
  ggplot(., aes(long, lat, group = group, fill = `Part de l'industrie (%)`)) +
  scale_fill_viridis_d(direction = -1) + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1990

1999

Code
map1999 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "1999") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  rename(`Part de l'industrie (%)` = value) %>%
  ggplot(., aes(long, lat, group = group, fill = `Part de l'industrie (%)`)) +
  scale_fill_viridis_d(direction = -1) + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1999

2010

Code
map2010 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "2010") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  rename(`Part de l'industrie (%)` = value) %>%
  ggplot(., aes(long, lat, group = group, fill = `Part de l'industrie (%)`)) +
  scale_fill_viridis_d(direction = -1) + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map2010

2015

Code
map2015 <- recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens == "2015") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ "< 5 %",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  rename(`Part de l'industrie (%)` = value) %>%
  ggplot(., aes(long, lat, group = group, fill = `Part de l'industrie (%)`)) +
  scale_fill_viridis_d(direction = -1) + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.5),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map2015

1968 VS 2015

Code
ggarrange(map1968, map2015, 
          ncol=2, nrow = 1, 
          legend = "bottom",
          common.legend = TRUE,
          labels = c("1968", "2015"))

1968, 1982, 2015

Code
ggarrange(map1968, map1982, map2015, 
          ncol=3, nrow = 1,
          common.legend = T,
          legend="bottom",
          labels = c("1968", "1982", "2015"))

1968, 1975, 1982, 1990, 1999, 2010, 2015

Normal

Code
ggarrange(map1968, map1975, map1982, map1990, map1999, map2010, map2015, 
          ncol=4, nrow = 2,
          common.legend = T,
          legend="bottom",
          labels = c("1968", "1975", "1982", "1990", "1999", "2010", "2015"))

Resize

Code
ggarrange(map1968, map1975, map1982, map1990, map1999, map2010, map2015, 
          ncol=4, nrow = 2,
          common.legend = T,
          legend="bottom",
          labels = c("1968", "1975", "1982", "1990", "1999", "2010", "2015"))

1968, 1975, 1982, 1999, 2010, 2015

Code
ggarrange(map1968, map1975, map1982, map1999, map2010, map2015, 
          ncol=3, nrow = 2,
          common.legend = T,
          legend="bottom",
          labels = c("1968", "1975", "1982", "1999", "2010", "2015"))

Agriculture Map

1968

Code
map1968 <- recensement_aggregate %>%
  filter(NES4 == "1",
         an_recens == "1968") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ " 0 % à 5%",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Greens",
                    name="Part du secteur agricole (%)\n1968") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.6),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1968

2015

Code
map2015 <- recensement_aggregate %>%
  filter(NES4 == "1",
         an_recens == "2015") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value < 0.05 ~ " 0 % à 5%",
                           value >= 0.05 & value < 0.10 ~ " 5 % à 10 %",
                           value >= 0.10 & value < 0.15 ~ "10 % à 15 %",
                           value >= 0.15 & value < 0.20 ~ "15 % à 20 %",
                           value >= 0.20 & value < 0.25 ~ "20 % à 25 %",
                           value >= 0.25 & value < 0.30 ~ "25 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 ~ "35% +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Greens",
                    name="Part du secteur agricole (%)\n2015") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.6),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map2015

Service Map

1968

Code
map1968 <-  recensement_aggregate %>%
  filter(NES4 == "4",
         an_recens == "1968") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value >= 0 & value < 0.30 ~ " 0 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 & value < 0.40 ~ "35 % à 40 %",
                           value >= 0.40 & value < 0.45 ~ "40 % à 45 %",
                           value >= 0.45 & value < 0.50 ~ "45 % à 50 %",
                           value >= 0.50 & value < 0.55 ~ "50 % à 55 %",
                           value >= 0.55 & value < 0.60 ~ "55 % à 60 %",
                           value >= 0.60 & value < 0.65 ~ "60 % à 65 %",
                           value >= 0.65 & value < 0.70 ~ "65 % à 70 %",
                           value >= 0.70 & value < 0.75 ~ "70 % à 75 %",
                           value >= 0.75 & value < 0.80 ~ "75 % à 80 %",
                           value >= 0.80 & value < 0.85 ~ "80 % à 85 %",
                           value >= 0.85 ~ "85 % +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Blues",
                    name="Part des Services\n1968") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.6),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map1968

2015

Code
map2015 <- recensement_aggregate %>%
  filter(NES4 == "4",
         an_recens == "2015") %>%
  rename(depts_code = dep_res_17,
         value = share) %>%
  right_join(france, by = "depts_code") %>%
  mutate(value = case_when(value >= 0 & value < 0.30 ~ " 0 % à 30 %",
                           value >= 0.30 & value < 0.35 ~ "30 % à 35 %",
                           value >= 0.35 & value < 0.40 ~ "35 % à 40 %",
                           value >= 0.40 & value < 0.45 ~ "40 % à 45 %",
                           value >= 0.45 & value < 0.50 ~ "45 % à 50 %",
                           value >= 0.50 & value < 0.55 ~ "50 % à 55 %",
                           value >= 0.55 & value < 0.60 ~ "55 % à 60 %",
                           value >= 0.60 & value < 0.65 ~ "60 % à 65 %",
                           value >= 0.65 & value < 0.70 ~ "65 % à 70 %",
                           value >= 0.70 & value < 0.75 ~ "70 % à 75 %",
                           value >= 0.75 & value < 0.80 ~ "75 % à 80 %",
                           value >= 0.80 & value < 0.85 ~ "80 % à 85 %",
                           value >= 0.85 ~ "85 % +")) %>%
  ggplot(., aes(long, lat, group = group, fill = value)) +
  scale_fill_brewer(palette = "Blues",
                    name="Part des Services\n2015") + geom_polygon() + coord_map() +
  labs(x = "", y = "", title = "") +
  theme(legend.position = c(1.1, 0.6),
        title=element_text(),
        axis.text.x=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks=element_blank(),
        axis.title.x=element_blank(),
        axis.title.y=element_blank(),
        panel.grid.major= element_blank(), 
        panel.background= element_blank())

map2015

Par département

Baisse emploi industriel

Code
recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens %in% c("1968", "2015")) %>%
  select(an_recens, dep_res_17, emp) %>%
  spread(an_recens, emp) %>%
  mutate(change = `2015`/`1968`-1) %>%
  arrange(change) %>%
  print_table_conditional

Part emploi industriel

Code
recensement_aggregate %>%
  filter(NES4 == "2",
         an_recens %in% c("1968", "2015")) %>%
  select(an_recens, dep_res_17, share) %>%
  spread(an_recens, share) %>%
  mutate(change = `2015` - `1968`) %>%
  arrange(change) %>%
  print_table_conditional

Pyrénées orientales

Code
recensement_aggregate %>%
  filter(NES4 == "2",
         dep_res_17 %in% c("66")) %>%
  mutate(an_recens = as.numeric(paste0(an_recens))) %>%
  ggplot + geom_line(aes(x = an_recens, y = share))