IPC_IPCH_adjustment <- `IPCH-IPC-2015-ensemble` %>%
group_by(date) %>%
summarise(OBS_VALUE = 100*OBS_VALUE[INDICATEUR == "IPCH"]/OBS_VALUE[INDICATEUR == "IPC"]) %>%
filter(month(date) == 1,
date <= as.Date("2019-01-01")) %>%
select(date, IPC_IPCH_adjustment = OBS_VALUE)
ip1828 %>%
filter(sheet == "fig5",
variable %in% c("decile1", "mediane", "decile9")) %>%
group_by(variable) %>%
mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
left_join(IPC_IPCH_adjustment, by = "date") %>%
ggplot() + ylab("Salaire net (IPCH)") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = 100*value/IPC_IPCH_adjustment, color = variable)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.15, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(10, 300, 2),
labels = dollar_format(accuracy = 1, prefix = ""))