DOWNLOAD_TIME |
---|
2021-12-02 |
Dépense de consommation pré-engagée des ménages - dep-pre-eng
Data - INSEE
Info
DOWNLOAD_TIME
Last
Code
`dep-pre-eng` %>%
group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
head(1) %>%
print_table_conditional()
year | Nobs |
---|---|
2020 | 152 |
Sources
Info
Les tableaux détaillés présentent la consommation effective des ménages depuis 1959 jusqu’à l’année du compte provisoire, déclinée aux niveaux diffusables les plus fins des nomenclatures de produits (Nomenclature agrégée), de fonction (COICOP) et de durabilité.
Pour chaque nomenclature (produit, fonction durabilité), les résultats détaillés ont le format suivant :
- Séries en niveau :
- Consommation aux prix courants (onglet M€cour), que l’on appelle aussi “en valeur” ou “en euros courants”
- Consommation en volume aux prix de l’année précédente chaînés (onglet M€2014), que l’on appelle aussi ““en volume”” ou en ““euros 2014”“. Les consommations en volume au prix de l’année précédente chaînée ne sont pas sommables. En conséquence, la somme des consommations en volume aux prix de l’année précédente chaîné des séries élémentaires constituant un niveau diffère de la consommation pour le niveau total de l’agrégat.
- Indices de prix base 100 en 2014 (onglet Iprix2014)
- Séries en évolution n/n-1 :
- Indices de valeur base 100 l’année précédente (onglet Ival)
- Indices de volume base 100 l’année précédente (onglet Ivol)
- Indices de prix base 100 l’année précédente (onglet Iprix)
- Structure des séries :
- Coefficients budgétaires aux prix courants en % (onglet Coeffcour)
variable
Code
`dep-pre-eng` %>%
group_by(variable) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
variable | Nobs |
---|---|
Iprix2014 | 1798 |
Ival | 1769 |
Ivol | 1769 |
M€2014 | 1798 |
M€cour | 2232 |
fonction, Fonction
Code
`dep-pre-eng` %>%
group_by(fonction, Fonction) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
year
Code
`dep-pre-eng` %>%
group_by(year) %>%
summarise(Nobs = n()) %>%
arrange(desc(year)) %>%
print_table_conditional()
2020
Désordonné
Code
`dep-pre-eng` %>%
filter(variable == "M€cour") %>%
%>%
year_to_date2 left_join(gdp, by = "date") %>%
filter(date == as.Date("2020-01-01")) %>%
select(-date) %>%
mutate(`% du PIB` = (100*value/(1000*gdp)) %>% round(., digits = 2),
value = round(value) %>% paste0(" Mds€")) %>%
select(-gdp) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Ordonné
Code
`dep-pre-eng` %>%
filter(variable == "M€cour") %>%
%>%
year_to_date2 left_join(gdp, by = "date") %>%
filter(date == as.Date("2020-01-01")) %>%
select(-date) %>%
arrange(-value) %>%
mutate(`% du PIB` = (100*value/(1000*gdp)) %>% round(., digits = 2),
value = round(value) %>% paste0(" Mds€")) %>%
select(-gdp) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Loyers réels, loyers imputés
Code
`dep-pre-eng` %>%
filter(variable == "M€cour") %>%
%>%
year_to_date2 filter(fonction %in% c("04.1", "04.2", "04.5")) %>%
left_join(gdp, by = "date") %>%
ggplot(.) + theme_minimal() + ylab("Consommation (% du PIB)") + xlab("") +
geom_line(aes(x = date, y = value/(1000*gdp), color = Fonction)) +
theme(legend.title = element_blank(),
legend.position = c(0.3, 0.91)) +
scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_y_continuous(breaks = 0.01*seq(0, 100, 0.5),
labels = scales::percent_format(accuracy = 0.1))