Zone d’emploi, par secteur (NACE88) - Séquoia de l’Acoss et des Urssaf (2008-2019) - ZE_NACE88_2019
Data - INSEE
Zone d’emploi
- Atlas des Zones d’Emploi 2010. pdf
Code
%>%
ZE_NACE88_2019 left_join(zone_emploi, by = "zone_emploi") %>%
group_by(zone_emploi, Zone_emploi, region) %>%
summarise(Nobs = n()) %>%
print_table_conditional
nace88
Code
%>%
ZE_NACE88_2019 left_join(nace88, by = "nace88") %>%
group_by(nace88, Nace88) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
variable
Code
%>%
ZE_NACE88_2019 group_by(variable) %>%
summarise(Nobs = n()) %>%
print_table_conditional
variable | Nobs |
---|---|
eff | 281892 |
nb_etab | 281892 |
date
Code
%>%
ZE_NACE88_2019 group_by(date) %>%
summarise(Nobs = n()) %>%
print_table_conditional
date | Nobs |
---|---|
2008-01-01 | 46982 |
2009-01-01 | 46982 |
2010-01-01 | 46982 |
2011-01-01 | 46982 |
2012-01-01 | 46982 |
2013-01-01 | 46982 |
2014-01-01 | 46982 |
2015-01-01 | 46982 |
2016-01-01 | 46982 |
2017-01-01 | 46982 |
2018-01-01 | 46982 |
2019-01-01 | 46982 |
Metallurgie - nace88 == 24
Code
%>%
ZE_NACE88_2019 filter(nace88 == 24,
year(date) %in% c(2008, 2019)) %>%
mutate(variable = paste0(variable, year(date))) %>%
select(-date) %>%
spread(variable, value) %>%
left_join(zone_emploi, by = "zone_emploi") %>%
select(-nace88) %>%
arrange(-eff2019) %>%
select(Zone_emploi, everything()) %>%
mutate(growth = round(100*(eff2019/eff2008 - 1), 1)) %>%
print_table_conditional
Saint-Claude
Code
%>%
ZE_NACE88_2019 filter(zone_emploi == "4307",
== "eff",
variable year(date) %in% c(2008, 2011, 2014, 2019)) %>%
mutate(year = year(date)) %>%
select(year, nace88, value) %>%
spread(year, value) %>%
left_join(nace88, by = "nace88") %>%
arrange(-`2019`) %>%
print_table_conditional