France, Portrait Social 2019 - FPS2019

Data - INSEE

variable

Code
FPS2019 %>%
  group_by(variable) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
variable Nobs
1er décile 25
9e décile 25
Actifs 10
Actifs BIT 21
Autres inactifs 10
Autres inactifs BIT 21
Moyenne 25
Médiane 25
PIB par unité de consommation (UC) 42
Retraités 10
Retraités BIT 21

sheet

Code
FPS2019 %>%
  group_by(sheet) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()
sheet Nobs
Figure 2 142
Figure 3 93

year

Code
FPS2019 %>%
  group_by(year) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(year)) %>%
  print_table_conditional()

Evolution des déciles et de la moyenne des niveaux de vie - E4

Figure 2

Rapport

Code
i_g("bib/insee/FPS2019/E4-fig2.png")

All

Code
FPS2019 %>%
  filter(sheet == "Figure 2") %>%
  year_to_date2 %>%
  ggplot(.) + theme_minimal() + ylab("Avant Redistribution") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.2, 0.8)) +
  scale_x_date(breaks = seq(1950, 2022, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_color_manual(values = viridis(6)[1:5]) +
  scale_y_log10(breaks = seq(0, 200, 10))

1990-

Code
FPS2019 %>%
  filter(sheet == "Figure 2") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1990-01-01")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1990-01-01")]) %>%
  ggplot(.) + theme_minimal() + ylab("Avant Redistribution") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.2, 0.8)) +
  scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_color_manual(values = viridis(6)[1:5]) +
  scale_y_log10(breaks = seq(0, 200, 5))

1996-

Code
FPS2019 %>%
  filter(sheet == "Figure 2") %>%
  year_to_date2 %>%
  filter(date >= as.Date("1996-01-01")) %>%
  group_by(variable) %>%
  mutate(value = 100*value/value[date == as.Date("1996-01-01")]) %>%
  ggplot(.) + theme_minimal() + ylab("Avant Redistribution") + xlab("") +
  geom_line(aes(x = date, y = value, color = variable)) +
  theme(legend.title = element_blank(),
        legend.position = c(0.2, 0.8)) +
  scale_x_date(breaks = seq(1950, 2022, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  scale_color_manual(values = viridis(6)[1:5]) +
  scale_y_log10(breaks = seq(0, 200, 5))