Code
`CNA-2010-EMPLOI` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Data - INSEE
`CNA-2010-EMPLOI` %>%
group_by(IDBANK, TITLE_FR) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
`CNA-2010-EMPLOI` %>%
left_join(INDICATEUR, by = "INDICATEUR") %>%
group_by(INDICATEUR, Indicateur) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
INDICATEUR | Indicateur | Nobs |
---|---|---|
CNA_EMPLOI_INTERIEUR | Emploi intérieur | 26246 |
CNA_VOLUME_HEURES_TRAV | Volume d'heures travaillées | 8780 |
CNA_DUREE_TRAVAILLEE | Durée annuelle effective travaillée | 4390 |
CNA_PRODUCTIVITE_HORAIRE | Productivité horaire | 4320 |
`CNA-2010-EMPLOI` %>%
left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
group_by(CNA_ACTIVITE, Cna_activite) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
`CNA-2010-EMPLOI` %>%
left_join(CNA_TYPE_EMP, by = "CNA_TYPE_EMP") %>%
group_by(CNA_TYPE_EMP, Cna_type_emp) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
CNA_TYPE_EMP | Cna_type_emp | Nobs |
---|---|---|
E10 | E10 - Emploi intérieur total | 17880 |
E20 | E20 - Emploi intérieur salarié | 8780 |
E21 | E21 - Emploi intérieur salarié déclaré | 8780 |
E30 | E30 - Emploi intérieur non salarié | 8296 |
`CNA-2010-EMPLOI` %>%
filter(CNA_ACTIVITE %in% c("NNTOTAL"),
== "NOMBRE_ACTIFS_OCCUPES_PP",
UNIT_MEASURE `SECT-INST` %in% c("S10"),
== "E10") %>%
CNA_TYPE_EMP left_join(CNA_TYPE_EMP, by = "CNA_TYPE_EMP") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = `SECT-INST`, linetype = `SECT-INST`)) +
scale_color_manual(values = viridis(5)[1:4]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 40, 1), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"))
`CNA-2010-EMPLOI` %>%
filter(CNA_ACTIVITE %in% c("NNTOTAL"),
== "NOMBRE_ACTIFS_OCCUPES_PP",
UNIT_MEASURE `SECT-INST` %in% c("S10"),
== "E10") %>%
CNA_TYPE_EMP left_join(CNA_TYPE_EMP, by = "CNA_TYPE_EMP") %>%
%>%
year_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(OBS_VALUE = as.numeric(OBS_VALUE)) %>%
ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = `SECT-INST`, linetype = `SECT-INST`)) +
scale_color_manual(values = viridis(5)[1:4]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 40, 1), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 1, prefix = "", suffix = "M"))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
== "2018",
TIME_PERIOD grepl("A5", CNA_ACTIVITE)) %>%
arrange(CNA_ACTIVITE) %>%
left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
select(Cna_activite, UNIT_MEASURE, OBS_VALUE) %>%
spread(UNIT_MEASURE, OBS_VALUE) %>%
setNames(c("Secteur", "Heures", "ETP", "PP", "%")) %>%
if (is_html_output()) print_table(.) else .} {
Secteur |
---|
NA |
:-------: |
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
== "2016",
TIME_PERIOD grepl("A10", CNA_ACTIVITE)) %>%
arrange(CNA_ACTIVITE) %>%
left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
select(Cna_activite, UNIT_MEASURE, OBS_VALUE) %>%
spread(UNIT_MEASURE, OBS_VALUE) %>%
setNames(c("Secteur", "Heures", "ETP", "PP", "%")) %>%
arrange(-ETP) %>%
if (is_html_output()) print_table(.) else .} {
Secteur | Heures | ETP | PP | % |
---|---|---|---|---|
A10-OQ - Administration publique, enseignement, santé humaine et action sociale | 11386021936 | 7765239.5 | 8313409.7 | 0.8 |
A10-GI - Commerce de gros et de détail, transports, hébergement et restauration | 9428087395 | 5704528.3 | 6211586.1 | 1.8 |
A10-MN - Activités spécialisées, scientifiques et techniques et activités de services administratifs et de soutien | 6275211050 | 3834017.2 | 4114653.0 | -0.8 |
A10-BE - Industrie manufacturière, industries extractives et autres | 4610381309 | 2845285.1 | 2932674.6 | 2.8 |
A10-FZ - Construction | 3020347378 | 1754756.3 | 1743479.8 | 1.9 |
A10-RU - Autres activités de services | 2151062902 | 1390690.1 | 1583419.3 | 0.7 |
A10-AZ - Agriculture, sylviculture et pêche | 1521695444 | 807383.7 | 742572.6 | -9.0 |
A10-JZ - Information et communication | 1323236931 | 804159.1 | 831623.5 | 1.5 |
A10-KZ - Activités financières et d'assurance | 1257113073 | 769395.3 | 792383.7 | -1.7 |
A10-LZ - Activités immobilières | 520182596 | 328117.6 | 346157.8 | 0.7 |
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
== "2016",
TIME_PERIOD grepl("A17", CNA_ACTIVITE)) %>%
arrange(CNA_ACTIVITE) %>%
left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
select(CNA_ACTIVITE, Cna_activite, UNIT_MEASURE, OBS_VALUE) %>%
spread(UNIT_MEASURE, OBS_VALUE) %>%
setNames(c("CNA_ACTIVITE", "Secteur", "Heures", "ETP", "PP", "%")) %>%
if (is_html_output()) print_table(.) else .} {
CNA_ACTIVITE | Secteur | Heures | ETP | PP | % |
---|---|---|---|---|---|
A17-AZ | A17-AZ - Agriculture, sylviculture et pêche | 1521695444 | 807383.7 | 742572.6 | -9.0 |
A17-C1 | A17-C1 - Fabrication de denrées alimentaires, de boissons et de produits à base de tabac | 1007959147 | 620088.7 | 647542.1 | -1.3 |
A17-C2 | A17-C2 - Cokéfaction et raffinage | 12018027 | 7950.8 | 8133.0 | -20.1 |
A17-C3 | A17-C3 - Fabrication d'équipements électriques, électroniques, informatiques ; fabrication de machines | 495506193 | 301431.0 | 309088.7 | 6.7 |
A17-C4 | A17-C4 - Fabrication de matériels de transport | 297371314 | 183912.9 | 188672.3 | 8.6 |
A17-C5 | A17-C5 - Fabrication d'autres produits industriels | 2322236646 | 1432148.2 | 1472589.0 | 2.6 |
A17-DE | A17-DE - Industries extractives, énergie, eau, gestion des déchets et dépollution | 475289982 | 299753.4 | 306649.5 | 2.2 |
A17-FZ | A17-FZ - Construction | 3020347378 | 1754756.3 | 1743479.8 | 1.9 |
A17-GZ | A17-GZ - Commerce ; réparation d'automobiles et de motocycles | 5505838066 | 3343618.0 | 3648366.6 | 1.2 |
A17-HZ | A17-HZ - Transports et entreposage | 2069759241 | 1305832.3 | 1367213.9 | 3.4 |
A17-IZ | A17-IZ - Hébergement et restauration | 1852490088 | 1055077.9 | 1196005.6 | 1.8 |
A17-JZ | A17-JZ - Information et communication | 1323236931 | 804159.1 | 831623.5 | 1.5 |
A17-KZ | A17-KZ - Activités financières et d'assurance | 1257113073 | 769395.3 | 792383.7 | -1.7 |
A17-LZ | A17-LZ - Activités immobilières | 520182596 | 328117.6 | 346157.8 | 0.7 |
A17-MN | A17-MN - Activités scientifiques et techniques ; services administratifs et de soutien | 6275211050 | 3834017.2 | 4114653.0 | -0.8 |
A17-OQ | A17-OQ - Administration publique, enseignement, santé humaine et action sociale | 11386021936 | 7765239.5 | 8313409.7 | 0.8 |
A17-RU | A17-RU - Autres activités de services | 2151062902 | 1390690.1 | 1583419.3 | 0.7 |
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
== "2016",
TIME_PERIOD grepl("A38", CNA_ACTIVITE)) %>%
arrange(CNA_ACTIVITE) %>%
left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
select(Cna_activite, UNIT_MEASURE, OBS_VALUE) %>%
spread(UNIT_MEASURE, OBS_VALUE) %>%
setNames(c("Secteur", "Heures", "ETP", "PP", "%")) %>%
arrange(-ETP) %>%
if (is_html_output()) print_table(.) else .} {
Secteur | Heures | ETP | PP | % |
---|---|---|---|---|
A38-AZ - Agriculture, sylviculture et pêche | NaN | NaN | NaN | NaN |
A38-BZ - Industries extractives | NaN | NaN | NaN | NaN |
A38-CA - Fabrication de denrées alimentaires, de boissons et de produits à base de tabac | NaN | NaN | NaN | NaN |
A38-CB - Fabrication de textiles, industries de l'habillement, industrie du cuir et de la chaussure | NaN | NaN | NaN | NaN |
A38-CC - Travail du bois, industries du papier et imprimerie | NaN | NaN | NaN | NaN |
A38-CD - Cokéfaction et raffinage | NaN | NaN | NaN | NaN |
A38-CE - Industrie chimique | NaN | NaN | NaN | NaN |
A38-CF - Industrie pharmaceutique | NaN | NaN | NaN | NaN |
A38-CG - Fabrication de produits en caoutchouc et en plastique ainsi que d'autres produits minéraux non métalliques | NaN | NaN | NaN | NaN |
A38-CH - Métallurgie et fabrication de produits métalliques à l'exception des machines et des équipements | NaN | NaN | NaN | NaN |
A38-CI - Fabrication de produits informatiques, électroniques et optiques | NaN | NaN | NaN | NaN |
A38-CJ - Fabrication d'équipements électriques | NaN | NaN | NaN | NaN |
A38-CK - Fabrication de machines et équipements n.c.a. | NaN | NaN | NaN | NaN |
A38-CL - Fabrication de matériels de transport | NaN | NaN | NaN | NaN |
A38-CM - Autres industries manufacturières ; réparation et installation de machines et d'équipements | NaN | NaN | NaN | NaN |
A38-DZ - Production et distribution d'électricité, de gaz, de vapeur et d'air conditionné | NaN | NaN | NaN | NaN |
A38-EZ - Production et distribution d'eau ; assainissement, gestion des déchets et dépollution | NaN | NaN | NaN | NaN |
A38-FZ - Construction | NaN | NaN | NaN | NaN |
A38-GZ - Commerce; réparation d'automobiles et de motocycles | NaN | NaN | NaN | NaN |
A38-HZ - Transports et entreposage | NaN | NaN | NaN | NaN |
A38-IZ - Hébergement et restauration | NaN | NaN | NaN | NaN |
A38-JA - Édition, audiovisuel et diffusion | NaN | NaN | NaN | NaN |
A38-JB - Télécommunications | NaN | NaN | NaN | NaN |
A38-JC - Activités informatiques et services d'information | NaN | NaN | NaN | NaN |
A38-KZ - Activités financières et d'assurance | NaN | NaN | NaN | NaN |
A38-LZ - Activités immobilières | NaN | NaN | NaN | NaN |
A38-MA - Activités juridiques, comptables, de gestion, d'architecture, d'ingénierie, de contrôle et d'analyses techniques | NaN | NaN | NaN | NaN |
A38-MB - Recherche-développement scientifique | NaN | NaN | NaN | NaN |
A38-MC - Autres activités spécialisées, scientifiques et techniques | NaN | NaN | NaN | NaN |
A38-NZ - Activités de services administratifs et de soutien | NaN | NaN | NaN | NaN |
A38-OZ - Administration publique | NaN | NaN | NaN | NaN |
A38-PZ - Enseignement | NaN | NaN | NaN | NaN |
A38-QA - Activités pour la santé humaine | NaN | NaN | NaN | NaN |
A38-QB - Hébergement médico-social et social et action sociale sans hébergement | NaN | NaN | NaN | NaN |
A38-RZ - Arts, spectacles et activités récréatives | NaN | NaN | NaN | NaN |
A38-SZ - Autres activités de services | NaN | NaN | NaN | NaN |
A38-TZ - Activités des ménages en tant qu'employeurs ; activités indifférenciées des ménages en tant que producteurs de biens et services pour usage propre | NaN | NaN | NaN | NaN |
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A10-FZ", "A10-BE", "A10-AZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date filter(date >= as.Date("2010-01-01")) %>%
ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.4, 0.1),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1)),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A10-OQ", "A10-GI", "A10-MN", "A10-RU"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date filter(date >= as.Date("2010-01-01")) %>%
ggplot() +
geom_line(aes(x = date, y = OBS_VALUE/1000000, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 10, 1),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"),
limits = c(0.5, 15)) +
ylab("Nombre d'actifs occupés") + xlab("")
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A10-JZ", "A10-KZ", "A10-LZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date filter(date >= as.Date("2010-01-01")) %>%
ggplot() +
geom_line(aes(x = date, y = OBS_VALUE/1000000, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 1) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 6, 0.1),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M")) +
ylab("Nombre d'actifs occupés") + xlab("")
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A10-FZ", "A10-BE", "A10-AZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.4, 0.1),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1)),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A10-OQ", "A10-GI", "A10-MN", "A10-RU"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() +
geom_line(aes(x = date, y = OBS_VALUE/1000000, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.9),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 10, 1),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M"),
limits = c(0.5, 15)) +
ylab("Nombre d'actifs occupés") + xlab("")
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A10-JZ", "A10-KZ", "A10-LZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() +
geom_line(aes(x = date, y = OBS_VALUE/1000000, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
theme_minimal() +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(0, 6, 0.1),
labels = dollar_format(accuracy = 0.1, prefix = "", suffix = "M")) +
ylab("Nombre d'actifs occupés") + xlab("")
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A17-C1", "A17-C4", "A17-C3"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.1, 0.7))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A17-C2", "A17-C5", "A17-DE"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.45),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-OZ", "A38-NZ", "A38-PZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.7, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-FZ", "A38-HZ", "A38-MA"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.59, 0.14),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.1, 2.1))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-IZ", "A38-AZ", "A38-KZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.59, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.1, 5))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-SZ", "A38-CA", "A38-JC"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.01, 1))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-RZ", "A38-MB", "A38-CH"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.1, 1))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-CM", "A38-LZ", "A38-MC"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.06, 0.7))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-CG", "A38-TZ", "A38-JA"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.7, 0.15),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.03, 0.55))
A38-CL - Fabrication de matériels de transport
A38-CC - Travail du bois, industries du papier et imprimerie
A38-EZ - Production et distribution d’eau ; assainissement, gestion des déchets et dépollution
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-CL", "A38-CC", "A38-EZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.15),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.03, 0.5))
A38-CK - Fabrication de machines et équipements n.c.a.
A38-DZ - Production et distribution d’électricité, de gaz, de vapeur et d’air conditionné
A38-CE - Industrie chimique
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-CK", "A38-DZ", "A38-CE"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.15),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.07, 0.35))
A38-JB - Télécommunications A38-CB - Fabrication de textiles, industries de l’habillement, industrie du cuir et de la chaussure A38-CI - Fabrication de produits informatiques, électroniques et optiques
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-JB", "A38-CB", "A38-CI"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.15),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.07, 1))
A38-CJ - Fabrication d’équipements électriques
A38-CF - Industrie pharmaceutique
A38-BZ - Industries extractives
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-CJ", "A38-CF", "A38-BZ"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.4, 0.25),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.01, 0.2))
`CNA-2010-EMPLOI` %>%
filter(CNA_TYPE_EMP == "E10",
%in% c("A38-CD"),
CNA_ACTIVITE == "NOMBRE_ACTIFS_OCCUPES_PP") %>%
UNIT_MEASURE left_join(CNA_ACTIVITE, by = "CNA_ACTIVITE") %>%
%>%
year_to_date ggplot() + theme_minimal() + ylab("Nombre d'actifs occupés") + xlab("") +
geom_line(aes(x = date, y = OBS_VALUE/10^6, color = Cna_activite, linetype = Cna_activite)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.5, 0.2),
legend.title = element_blank()) +
scale_y_log10(breaks = c(seq(0, 6, 0.5), seq(0, 1, 0.1), seq(0, 0.1, 0.01)),
labels = dollar_format(accuracy = 0.01, prefix = "", suffix = "M"),
limits = c(0.005, 0.06))