Mortalité infantile par département et région - p2d_2019.fr

Data - INED

year

Code
p2d_2019.fr %>%
  group_by(year) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
year Nobs
1994 762
1995 762
1996 762
1997 762
1998 762
1999 762
2000 762
2001 762
2002 762
2003 762
2004 762
2005 762
2006 762
2007 762
2008 762
2009 762
2010 762
2011 762
2012 762
2013 762
1990 726
1991 726
1992 726
1993 726
2014 684
2015 684
2016 684
2017 684
2018 684
2019 684

dep_region

Code
p2d_2019.fr %>%
  group_by(dep_region) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

variable

Code
p2d_2019.fr %>%
  group_by(variable) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
variable Nobs
deces_moins_de_28_jours 3708
deces_moins_de_7_jours 3708
deces_moins_un_an 3708
mortalite_infantile 3708
mortalite_neonatale 3708
nes_vivants 3708

Hauts de Seine, Paris, Seine-Saint-Denis

Code
p2d_2019.fr %>%
  year_to_date2 %>%
  filter(variable %in% c("deces_moins_de_7_jours", "nes_vivants"),
         dep_region %in% c("Hauts-de-Seine", "Paris", "Seine-Saint-Denis")) %>%
  spread(variable, value) %>%
  mutate(value = 1000*deces_moins_de_7_jours/nes_vivants) %>%
  ggplot + geom_line(aes(x = date, y = value, color = dep_region)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  xlab("") + ylab("") + theme_minimal() +
  scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.8, 0.9),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = seq(0, 100, 0.2),
                     labels = dollar_format(a = .1, pre = "", su = "‰"))