Code
%>%
PCPI_PC_CP_A_PT group_by(FREQ) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Nobs |
---|---|
M | 100658 |
Q | 36292 |
A | 9453 |
Data - IMF - IFS
%>%
PCPI_PC_CP_A_PT group_by(FREQ) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
FREQ | Nobs |
---|---|
M | 100658 |
Q | 36292 |
A | 9453 |
%>%
PCPI_PC_CP_A_PT left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n(),
min = first(TIME_PERIOD),
max = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
PCPI_PC_CP_A_PT filter(FREQ == "M") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n(),
min = first(TIME_PERIOD),
max = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
PCPI_PC_CP_A_PT filter(FREQ == "Q") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n(),
min = first(TIME_PERIOD),
max = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
PCPI_PC_CP_A_PT filter(FREQ == "A") %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area) %>%
summarise(Nobs = n(),
min = first(TIME_PERIOD),
max = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
PCPI_PC_CP_A_PT filter(REF_AREA %in% c("NZ"),
== "A") %>%
FREQ year_to_date2() %>%
transmute(date, value = OBS_VALUE/100, variable = "Inflation") %>%
bind_rows(CBPOL_M %>%
filter(REF_AREA %in% c("NZ"),
== "M") %>%
FREQ transmute(date, value = OBS_VALUE/100, variable = "Policy rates")) %>%
filter(date >= as.Date("1980-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = value, color = variable)) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 5),
labels = scales::percent_format(accuracy = 1)) +
theme(legend.position = c(0.65, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2030, 5), "-01-01")),
labels = date_format("%Y"))
%>%
PCPI_PC_CP_A_PT filter(REF_AREA %in% c("NZ"),
== "A") %>%
FREQ year_to_date2() %>%
transmute(date, value = OBS_VALUE/100, variable = "Inflation") %>%
bind_rows(CBPOL_M %>%
filter(REF_AREA %in% c("NZ"),
== "M") %>%
FREQ transmute(date, value = OBS_VALUE/100, variable = "Policy rates")) %>%
filter(date >= as.Date("1985-01-01")) %>%
ggplot(.) + theme_minimal() + xlab("") + ylab("") +
geom_line(aes(x = date, y = value, color = variable)) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 5),
labels = scales::percent_format(accuracy = 1)) +
theme(legend.position = c(0.65, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2030, 5), "-01-01")),
labels = date_format("%Y"))
%>%
PCPI_PC_CP_A_PT filter(REF_AREA %in% c("FR", "DE", "IT", "US"),
== "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
month_to_date2() %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE / 100, color = Ref_area, linetype = Ref_area)) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.65, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2030, 5), "-01-01")),
labels = date_format("%y")) +
xlab("") + ylab("Inflation Rates")
%>%
PCPI_PC_CP_A_PT filter(REF_AREA %in% c("JP", "CA", "AU", "GB"),
== "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
month_to_date2() %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE / 100, color = Ref_area, linetype = Ref_area)) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.65, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2030, 5), "-01-01")),
labels = date_format("%y")) +
xlab("") + ylab("Inflation Rates")
%>%
PCPI_PC_CP_A_PT filter(REF_AREA %in% c("ES", "AT", "NO", "SE"),
== "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
month_to_date2() %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE / 100, color = Ref_area, linetype = Ref_area)) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.65, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2030, 5), "-01-01")),
labels = date_format("%y")) +
xlab("") + ylab("Inflation Rates")
%>%
PCPI_PC_CP_A_PT filter(REF_AREA %in% c("IE", "GR", "DK", "IS"),
== "M") %>%
FREQ left_join(REF_AREA, by = "REF_AREA") %>%
month_to_date2() %>%
ggplot(.) + theme_minimal() +
geom_line(aes(x = date, y = OBS_VALUE / 100, color = Ref_area, linetype = Ref_area)) +
scale_y_continuous(breaks = 0.01*seq(-100, 300, 5),
labels = scales::percent_format(accuracy = 1)) +
scale_color_manual(values = viridis(5)[1:4]) +
theme(legend.position = c(0.65, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = as.Date(paste0(seq(1700, 2030, 5), "-01-01")),
labels = date_format("%y")) +
xlab("") + ylab("Inflation Rates")