Housing, Water, Electricity, Gas and Other Fuels, Weight, Percent - PCPIHAH_WT_PT

Data - IMF - CPI

FREQ

Code
PCPIHAH_WT_PT %>%
  left_join(FREQ, by = "FREQ") %>%
  group_by(FREQ, Freq) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
FREQ Freq Nobs
M Monthly 11247
Q Quarterly 3727

REF_AREA

All

Code
PCPIHAH_WT_PT %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area, FREQ) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Monthly

Code
PCPIHAH_WT_PT %>%
  filter(FREQ == "M") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area, FREQ) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Quarterly

Code
PCPIHAH_WT_PT %>%
  filter(FREQ == "Q") %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  group_by(REF_AREA, Ref_area, FREQ) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

TIME_PERIOD

Code
PCPIHAH_WT_PT %>%
  group_by(TIME_PERIOD) %>%
  summarise(Nobs = n()) %>%
  print_table_conditional()

January 2020, 2015, 2010

Monthly

Code
PCPIHAH_WT_PT %>%
  filter(FREQ == "M",
         TIME_PERIOD %in% c("2020-01", "2015-01", "2010-01")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  select(REF_AREA, Ref_area, TIME_PERIOD, OBS_VALUE) %>%
  mutate(OBS_VALUE = round(OBS_VALUE, 1)) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  arrange(-`2020-01`) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Quarterly

Code
PCPIHAH_WT_PT %>%
  filter(FREQ == "Q",
         TIME_PERIOD %in% c("2020-Q1", "2015-Q1", "2010-Q1")) %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  select(REF_AREA, Ref_area, TIME_PERIOD, OBS_VALUE) %>%
  mutate(OBS_VALUE = round(OBS_VALUE, 1)) %>%
  spread(TIME_PERIOD, OBS_VALUE) %>%
  arrange(-`2020-Q1`) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
         Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

3 Countries

France, Germany, UK

Code
PCPIHAH_WT_PT %>%
  filter(REF_AREA %in% c("GB", "FR", "DE"),
         FREQ == "M") %>%
  month_to_date2() %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(!is.na(OBS_VALUE)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Housing (weights)") +
  geom_line(aes(x = date, y = OBS_VALUE/100, color = Ref_area, linetype = Ref_area)) + 
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
                     labels = percent_format(accuracy = 1)) +
  scale_color_manual(values = viridis(5)[1:4]) +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

Italy, Spain, Greece

Code
PCPIHAH_WT_PT %>%
  filter(REF_AREA %in% c("IT", "ES", "GR"),
         FREQ == "M") %>%
  month_to_date2() %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(!is.na(OBS_VALUE)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Housing (weights)") +
  geom_line(aes(x = date, y = OBS_VALUE/100, color = Ref_area, linetype = Ref_area)) + 
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
                     labels = percent_format(accuracy = 1)) +
  scale_color_manual(values = viridis(5)[1:4]) +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())

Japan, Norway, Portugal

Code
PCPIHAH_WT_PT %>%
  filter(REF_AREA %in% c("PT", "JP", "NO"),
         FREQ == "M") %>%
  month_to_date2() %>%
  left_join(REF_AREA, by = "REF_AREA") %>%
  filter(!is.na(OBS_VALUE)) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Housing (weights)") +
  geom_line(aes(x = date, y = OBS_VALUE/100, color = Ref_area, linetype = Ref_area)) + 
  scale_x_date(breaks = seq(1950, 2020, 5) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  scale_y_continuous(breaks = 0.01*seq(0, 100, 1),
                     labels = percent_format(accuracy = 1)) +
  scale_color_manual(values = viridis(5)[1:4]) +
  theme(legend.position = c(0.2, 0.80),
        legend.title = element_blank())