NGDP_USD %>%
group_by(FREQ) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()| FREQ | Nobs |
|---|---|
| Q | 10342 |
| A | 8801 |
NGDP_USD %>%
group_by(TIME_PERIOD) %>%
summarise(Nobs = n()) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()NGDP_USD %>%
left_join(REF_AREA, by = "REF_AREA") %>%
group_by(REF_AREA, Ref_area, FREQ) %>%
summarise(Nobs = n(),
min = first(TIME_PERIOD),
max = last(TIME_PERIOD)) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(gsub(" ", "-", Ref_area))),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}NGDP_USD %>%
filter(REF_AREA == "FR",
FREQ == "A") %>%
mutate(OBS_VALUE = OBS_VALUE*10^(UNIT_MULT)) %>%
select(TIME_PERIOD, NGDP_USD = OBS_VALUE) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()NY.GDP.MKTP.CD %>%
left_join(iso2c, by = "iso2c") %>%
filter(Iso2c == "France") %>%
mutate(year = paste0(year)) %>%
arrange(desc(year)) %>%
select(TIME_PERIOD = year, NGDP_USD = NY.GDP.MKTP.CD) %>%
print_table_conditional()NGDP_USD %>%
filter(REF_AREA == "FR",
FREQ == "A") %>%
mutate(OBS_VALUE = OBS_VALUE*10^(UNIT_MULT)) %>%
select(FREQ, TIME_PERIOD, NGDP_USD = OBS_VALUE) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()NGDP_USD %>%
filter(REF_AREA == "FR",
FREQ == "Q") %>%
mutate(OBS_VALUE = OBS_VALUE*10^(UNIT_MULT)) %>%
select(FREQ, TIME_PERIOD, NGDP_USD = OBS_VALUE) %>%
arrange(desc(TIME_PERIOD)) %>%
print_table_conditional()