Unemployment distribution by duration (by sex and age) (%) - UNE_TUNE_SEX_AGE_DUR_DT_A

Data - ILO

classif1

Code
UNE_TUNE_SEX_AGE_DUR_DT_A %>%
  left_join(classif1, by = "classif1") %>%
  group_by(classif1, Classif1) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
classif1 Classif1 Nobs
AGE_YTHADULT_YGE15 Age (Youth, adults): 15+ 61939
AGE_AGGREGATE_TOTAL Age (Aggregate bands): Total 58988
AGE_YTHADULT_YGE25 Age (Youth, adults): 25+ 57506
AGE_AGGREGATE_Y25-54 Age (Aggregate bands): 25-54 57285
AGE_AGGREGATE_Y15-24 Age (Aggregate bands): 15-24 54221
AGE_YTHADULT_Y15-24 Age (Youth, adults): 15-24 53422
AGE_10YRBANDS_TOTAL Age (10-year bands): Total 51810
AGE_YTHADULT_Y15-64 Age (Youth, adults): 15-64 49083
AGE_10YRBANDS_Y15-24 Age (10-year bands): 15-24 47437
AGE_10YRBANDS_Y25-34 Age (10-year bands): 25-34 47286
AGE_10YRBANDS_Y35-44 Age (10-year bands): 35-44 44888
AGE_10YRBANDS_Y45-54 Age (10-year bands): 45-54 42083
AGE_AGGREGATE_Y55-64 Age (Aggregate bands): 55-64 41006
AGE_10YRBANDS_Y55-64 Age (10-year bands): 55-64 35372
AGE_10YRBANDS_YGE65 Age (10-year bands): 65+ 14303
AGE_AGGREGATE_YGE65 Age (Aggregate bands): 65+ 12387

classif2

Code
UNE_TUNE_SEX_AGE_DUR_DT_A %>%
  left_join(classif2, by = "classif2") %>%
  group_by(classif2, Classif2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
classif2 Classif2 Nobs
DUR_AGGREGATE_TOTAL Duration (Aggregate): Total 76940
DUR_AGGREGATE_MLT6 Duration (Aggregate): Less than 6 months 72181
DUR_DETAILS_TOTAL Duration (Detailed): Total 69880
DUR_AGGREGATE_MGE12 Duration (Aggregate): 12 months or more 68192
DUR_AGGREGATE_MGE6LT12 Duration (Aggregate): 6 months to less than 12 months 64692
DUR_DETAILS_MGE3LT6 Duration (Detailed): 3 months to less than 6 months 59853
DUR_DETAILS_MGE1LT3 Duration (Detailed): 1 month to less than 3 months 59726
DUR_DETAILS_MGE6LT12 Duration (Detailed): 6 months to less than 12 months 58622
DUR_DETAILS_MGE12LT24 Duration (Detailed): 12 months to less than 24 months 57083
DUR_DETAILS_MLT1 Duration (Detailed): Less than 1 month 51420
DUR_DETAILS_MGE24 Duration (Detailed): 24 months or more 44697
DUR_AGGREGATE_X Duration (Aggregate): Not elsewhere classified 23203
DUR_DETAILS_X Duration (Detailed): Not elsewhere classified 21574
DUR_DETAILS_MLT3 Duration (Detailed): Less than 3 months 942
DUR_AGGREGATE_MLT12 Duration (Aggregate): Less than 12 months 11

source

Code
UNE_TUNE_SEX_AGE_DUR_DT_A %>%
  left_join(source, by = "source") %>%
  group_by(source, Source) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional

sex

Code
UNE_TUNE_SEX_AGE_DUR_DT_A %>%
  left_join(sex, by = "sex") %>%
  group_by(sex, Sex) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
sex Sex Nobs
SEX_T Sex: Total 256448
SEX_M Sex: Male 241669
SEX_F Sex: Female 230899

ref_area

Code
UNE_TUNE_SEX_AGE_DUR_DT_A %>%
  left_join(ref_area, by = "ref_area") %>%
  group_by(ref_area, Ref_area) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Ref_area)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

AGE_YTHADULT_YGE15

Table

Code
UNE_TUNE_SEX_AGE_DUR_DT_A %>%
  filter(classif1 == "AGE_YTHADULT_YGE15",
         sex == "SEX_T") %>%
  arrange(ref_area, time) %>%
  left_join(ref_area, by = "ref_area") %>%
  group_by(ref_area, Ref_area) %>%
  summarise(year1 = first(time),
            value1 = first(obs_value) %>% round() %>% paste0(" %"),
            year2 = last(time),
            value2 = last(obs_value) %>% round %>% paste0(" %")) %>%
  arrange(year1) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Ref_area)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

AGE_AGGREGATE_TOTAL

Table

Code
UNE_TUNE_SEX_AGE_DUR_DT_A %>%
  filter(classif1 == "AGE_AGGREGATE_TOTAL",
         sex == "SEX_T") %>%
  arrange(ref_area, time) %>%
  left_join(ref_area, by = "ref_area") %>%
  group_by(ref_area, Ref_area) %>%
  summarise(year1 = first(time),
            value1 = first(obs_value) %>% round() %>% paste0(" %"),
            year2 = last(time),
            value2 = last(obs_value) %>% round %>% paste0(" %")) %>%
  arrange(year1) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Ref_area)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}