Net international investment position - annual data

Data - Eurostat

Info

source dataset .html .qmd .RData
eurostat tipsii10 2024-11-22 2024-12-19 2024-10-08

DOWNLOAD_TIME

Code
tibble(DOWNLOAD_TIME = as.Date(file.info("~/iCloud/website/data/eurostat/tipsii10.RData")$mtime)) %>%
  print_table_conditional()
DOWNLOAD_TIME
2024-10-08

Last

Code
tipsii10 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2023 57

geo

Code
tipsii10 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

unit

Code
tipsii10 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
unit Unit Nobs
PC_GDP Percentage of gross domestic product (GDP) 675
MIO_NAC Million units of national currency 661

time

Code
tipsii10 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2023 57
2022 57
2021 57
2020 57
2019 57
2018 57
2017 57
2016 57
2015 57
2014 57
2013 57
2012 54
2011 54
2010 54
2009 54
2008 54
2007 54
2006 54
2005 54
2004 48
2003 40
2002 36
2001 32
2000 32
1999 30
1998 18
1997 15
1996 15
1995 11

Table

Code
tipsii10 %>%
  filter(unit == "PC_GDP",
         time == "2020") %>%
  select_if(~ n_distinct(.) > 1) %>%
  left_join(geo, by = "geo") %>%
  select(geo, Geo, values) %>%
  arrange(-values) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

France, Germany, Italy, Belgium, Netherlands

Code
tipsii10 %>%
  filter(geo %in% c("DE", "BE", "FR", "IT", "NL", "ES"),
         unit == "PC_GDP") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/100) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) + theme_minimal() +
  scale_color_identity() + add_6flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("Net international investment position - annual data") +
  scale_y_continuous(breaks = 0.01*seq(-300, 200, 10),
                     labels = scales::percent_format(accuracy = 1)) +
  geom_hline(yintercept = -0.35, linetype = "dashed") +
  geom_hline(yintercept = 0, linetype = "solid")

France, Germany, Italy, Spain, Netherlands

Code
tipsii10 %>%
  filter(geo %in% c("DE", "ES", "FR", "IT", "NL"),
         unit == "PC_GDP") %>%
  year_to_date %>%
  left_join(geo, by = "geo") %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values/100) %>%
  ggplot + geom_line(aes(x = date, y = values, color = color)) + theme_minimal() +
  scale_color_identity() + add_5flags +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2030, 2), "-01-01")),
               labels = date_format("%Y")) +
  xlab("") + ylab("Net international investment position - annual data") +
  scale_y_continuous(breaks = 0.01*seq(-300, 200, 20),
                     labels = scales::percent_format(accuracy = 1)) +
  geom_hline(yintercept = -0.35, linetype = "dashed") +
  geom_hline(yintercept = 0, linetype = "solid")