Code
tibble(DOWNLOAD_TIME = as.Date(file.info("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/eurostat/tipsfs10.RData")$mtime)) %>%
print_table_conditional()
DOWNLOAD_TIME |
---|
2024-10-08 |
Data - Eurostat
tibble(DOWNLOAD_TIME = as.Date(file.info("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/eurostat/tipsfs10.RData")$mtime)) %>%
print_table_conditional()
DOWNLOAD_TIME |
---|
2024-10-08 |
%>%
tipsfs10 group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2023 | 60 |
%>%
tipsfs10 select_if(~n_distinct(.) > 1) %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
unit | Unit | Nobs |
---|---|---|
MIO_NAC | Million units of national currency | 814 |
PC_GDP | Percentage of gross domestic product (GDP) | 814 |
PCH_PRE | Percentage change on previous period | 790 |
%>%
tipsfs10 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
tipsfs10 filter(geo %in% c("FR", "DE", "NL", "ES", "IT"),
== "PC_GDP") %>%
unit %>%
year_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
mutate(color = ifelse(geo == "NL", color2, color)) %>%
+ geom_line(aes(x = date, y = values, color = color)) + theme_minimal() +
ggplot scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
labels = date_format("%y")) +
xlab("") + ylab("Total financial sector liabilities, non-consolidated - annual data") +
scale_y_continuous(breaks = 0.01*seq(-300, 2200, 100),
labels = scales::percent_format(accuracy = 1))
%>%
tipsfs10 filter(geo %in% c("FR", "DE", "NL", "ES", "IT"),
== "PCH_PRE") %>%
unit %>%
year_to_date left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(values = values/100) %>%
mutate(color = ifelse(geo == "NL", color2, color)) %>%
+ geom_line(aes(x = date, y = values, color = color)) + theme_minimal() +
ggplot scale_color_identity() + add_5flags +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 2), "-01-01")),
labels = date_format("%y")) +
xlab("") + ylab("Total financial sector liabilities, non-consolidated - annual data") +
scale_y_continuous(breaks = 0.01*seq(-300, 2200, 5),
labels = scales::percent_format(accuracy = 1)) +
geom_hline(yintercept = 0.165, linetype = "dashed")