Code
%>%
tec00104 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Data - Eurostat
%>%
tec00104 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
tec00104 group_by(unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Nobs |
---|---|
PC | 313 |
%>%
tec00104 group_by(sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
sector | Nobs |
---|---|
S14_S15 | 313 |
%>%
tec00104 group_by(na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
na_item | Nobs |
---|---|
DIR_S14_S15 | 313 |
%>%
tec00104 filter(geo %in% c("FR", "DE", "PT")) %>%
%>%
year_to_enddate left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = values/100, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 1), "-01-01")),
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Gross debt-to-income ratio of households") +
scale_y_continuous(breaks = 0.01*seq(0, 200, 5),
labels = scales::percent_format(accuracy = 1))