Turnover and volume of sales in wholesale and retail trade - quarterly data - sts_trtu_q

Data - Eurostat

nace_r2

Code
sts_trtu_q %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

s_adj

Code
sts_trtu_q %>%
  left_join(s_adj, by = "s_adj") %>%
  group_by(s_adj, S_adj) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
s_adj S_adj Nobs
SCA Seasonally and calendar adjusted data 552134
CA Calendar adjusted data, not seasonally adjusted data 550825
NSA Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) 341066

unit

Code
sts_trtu_q %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
unit Unit Nobs
I15 Index, 2015=100 452197
I21 Index, 2021=100 387490
I10 Index, 2010=100 275617
PCH_PRE Percentage change on previous period 167045
PCH_SM Percentage change compared to same period in previous year 161676

indic_bt

Code
sts_trtu_q %>%
  left_join(indic_bt, by = "indic_bt") %>%
  group_by(indic_bt, Indic_bt) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
indic_bt Indic_bt Nobs
TOVT Index of turnover - Total 812569
TOVV Index of deflated turnover 631456

geo

Code
sts_trtu_q %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
sts_trtu_q %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Turnover and volume of sales in wholesale and retail trade

France, Germany, Italy

All

Code
sts_trtu_q %>%
  filter(nace_r2 == "G47",
         unit == "I15",
         indic_bt == "TOVV",
         geo %in% c("FR", "DE", "IT"),
         s_adj == "SCA") %>%
  select(geo, time, values) %>%
  group_by(geo) %>%
  left_join(geo, by = "geo") %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  quarter_to_date %>%
  ggplot() + ylab("Retail trade, except of motor vehicles and motorcycles") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = values, color = Geo)) +
  scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  add_3flags + 
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(-60, 300, 10))

2010-

Code
sts_trtu_q %>%
  filter(nace_r2 == "G47",
         unit == "I15",
         indic_bt == "TOVV",
         geo %in% c("FR", "DE", "IT"),
         s_adj == "SCA") %>%
  select(geo, time, values) %>%
  group_by(geo) %>%
  left_join(geo, by = "geo") %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  quarter_to_date %>%
  filter(date >= as.Date("2010-01-01")) %>%
  ggplot() + ylab("Retail trade, except of motor vehicles and motorcycles - Since 2010") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = values, color = Geo)) +
  scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%Y")) +
  add_3flags + 
  theme(legend.position = "none") +
  scale_y_log10(breaks = seq(-60, 300, 10))