Code
sts_trtu_q %>%
left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}Data - Eurostat
sts_trtu_q %>%
left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}sts_trtu_q %>%
left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| s_adj | S_adj | Nobs |
|---|---|---|
| SCA | Seasonally and calendar adjusted data | 552134 |
| CA | Calendar adjusted data, not seasonally adjusted data | 550825 |
| NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 341066 |
sts_trtu_q %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| I15 | Index, 2015=100 | 452197 |
| I21 | Index, 2021=100 | 387490 |
| I10 | Index, 2010=100 | 275617 |
| PCH_PRE | Percentage change on previous period | 167045 |
| PCH_SM | Percentage change compared to same period in previous year | 161676 |
sts_trtu_q %>%
left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| indic_bt | Indic_bt | Nobs |
|---|---|---|
| TOVT | Index of turnover - Total | 812569 |
| TOVV | Index of deflated turnover | 631456 |
sts_trtu_q %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}sts_trtu_q %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}sts_trtu_q %>%
filter(nace_r2 == "G47",
unit == "I15",
indic_bt == "TOVV",
geo %in% c("FR", "DE", "IT"),
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
quarter_to_date %>%
ggplot() + ylab("Retail trade, except of motor vehicles and motorcycles") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
sts_trtu_q %>%
filter(nace_r2 == "G47",
unit == "I15",
indic_bt == "TOVV",
geo %in% c("FR", "DE", "IT"),
s_adj == "SCA") %>%
select(geo, time, values) %>%
group_by(geo) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
quarter_to_date %>%
filter(date >= as.Date("2010-01-01")) %>%
ggplot() + ylab("Retail trade, except of motor vehicles and motorcycles - Since 2010") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
add_3flags +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))