Turnover in services - monthly data - sts_setu_m

Data - Eurostat

nace_r2

Code
sts_setu_m %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

s_adj

Code
sts_setu_m %>%
  left_join(s_adj, by = "s_adj") %>%
  group_by(s_adj, S_adj) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
s_adj S_adj Nobs
SCA Seasonally and calendar adjusted data 759996
CA Calendar adjusted data, not seasonally adjusted data 751777
NSA Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) 476182

unit

Code
sts_setu_m %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
unit Unit Nobs
I15 Index, 2015=100 648837
I21 Index, 2021=100 581021
I10 Index, 2010=100 308757
PCH_PRE Percentage change on previous period 231827
PCH_SM Percentage change compared to same period in previous year 217513

indic_bt

Code
sts_setu_m %>%
  left_join(indic_bt, by = "indic_bt") %>%
  group_by(indic_bt, Indic_bt) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
indic_bt Indic_bt Nobs
NETTUR Net turnover 1908304
VOL_SLS Volume of sales 79651

geo

Code
sts_setu_m %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
sts_setu_m %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}