Code
%>%
sts_intv_m left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
indic_bt | Indic_bt | Nobs |
---|---|---|
TOVT | Index of turnover - Total | 4179782 |
Data - Eurostat
%>%
sts_intv_m left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
indic_bt | Indic_bt | Nobs |
---|---|---|
TOVT | Index of turnover - Total | 4179782 |
%>%
sts_intv_m left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
%>%
sts_intv_m left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
s_adj | S_adj | Nobs |
---|---|---|
SCA | Seasonally and calendar adjusted data | 1593300 |
CA | Calendar adjusted data, not seasonally adjusted data | 1578233 |
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 1008249 |
%>%
sts_intv_m left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
I15 | Index, 2015=100 | 1288306 |
I21 | Index, 2021=100 | 1086311 |
I10 | Index, 2010=100 | 910585 |
PCH_PRE | Percentage change on previous period | 455843 |
PCH_SM | Percentage change compared to same period in previous year | 438737 |
%>%
sts_intv_m left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
sts_intv_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
%>%
sts_intv_m filter(nace_r2 == "C10",
== "I15",
unit == "SCA",
s_adj %in% c("DE")) %>%
geo group_by(indic_bt) %>%
mutate(values = 100*values/values[time == "2004M01"]) %>%
left_join(indic_bt, by = "indic_bt") %>%
%>%
month_to_date filter(date <= as.Date("2020-07-01"),
>= as.Date("2000-01-01")) %>%
date ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Indic_bt)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
%>%
sts_intv_m filter(nace_r2 == "C20",
== "I15",
unit == "SCA",
s_adj %in% c("DE")) %>%
geo group_by(indic_bt) %>%
mutate(values = 100*values/values[time == "2004M01"]) %>%
left_join(indic_bt, by = "indic_bt") %>%
%>%
month_to_date filter(date <= as.Date("2020-07-01"),
>= as.Date("2000-01-01")) %>%
date ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Indic_bt)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
%>%
sts_intv_m filter(nace_r2 == "C30",
== "I15",
unit == "SCA",
s_adj %in% c("DE")) %>%
geo group_by(indic_bt) %>%
mutate(values = 100*values/values[time == "2004M01"]) %>%
left_join(indic_bt, by = "indic_bt") %>%
%>%
month_to_date filter(date <= as.Date("2020-07-01"),
>= as.Date("2000-01-01")) %>%
date ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Indic_bt)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
%>%
sts_intv_m filter(nace_r2 == "C",
== "I15",
unit == "SCA",
s_adj %in% c("FR")) %>%
geo group_by(indic_bt) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(indic_bt, by = "indic_bt") %>%
%>%
month_to_date filter(date <= as.Date("2020-07-01")) %>%
ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Indic_bt)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
%>%
sts_intv_m filter(nace_r2 == "C",
== "I15",
unit == "SCA",
s_adj %in% c("DE")) %>%
geo group_by(indic_bt) %>%
mutate(values = 100*values/values[time == "2004M01"]) %>%
left_join(indic_bt, by = "indic_bt") %>%
%>%
month_to_date filter(date <= as.Date("2020-07-01")) %>%
ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Indic_bt)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
%>%
sts_intv_m filter(nace_r2 == "C",
== "I15",
unit == "SCA",
s_adj %in% c("DE")) %>%
geo group_by(indic_bt) %>%
mutate(values = 100*values/values[time == "2004M01"]) %>%
left_join(indic_bt, by = "indic_bt") %>%
%>%
month_to_date filter(date <= as.Date("2020-07-01"),
>= as.Date("2000-01-01")) %>%
date ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Indic_bt)) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_y_log10(breaks = seq(-60, 300, 10))
%>%
sts_intv_m filter(nace_r2 == "C",
== "I15",
unit == "SCA",
s_adj == "TOVT",
indic_bt %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 10))
%>%
sts_intv_m filter(nace_r2 == "C",
== "I15",
unit == "SCA",
s_adj == "TOVT",
indic_bt %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("1995-01-01")) %>%
ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))
%>%
sts_intv_m filter(nace_r2 == "C",
== "I15",
unit == "SCA",
s_adj == "TOVT",
indic_bt %in% c("FR", "DE", "IT")) %>%
geo select(geo, time, values) %>%
group_by(geo) %>%
mutate(values = 100*values/values[time == "2000M01"]) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
ggplot() + ylab("Index of turnover - Non domestic market") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = Geo)) +
scale_color_manual(values = c("#0055a4", "#000000", "#008c45")) +
scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%y")) +
geom_image(data = . %>%
filter(date == as.Date("2014-01-01")) %>%
mutate(image = paste0("../../icon/flag/", str_to_lower(Geo), ".png")),
aes(x = date, y = values, image = image), asp = 1.5) +
theme(legend.position = "none") +
scale_y_log10(breaks = seq(-60, 300, 5))