Labour input in industry - monthly data - sts_inlb_m

Data - Eurostat

Info

Info

  • Few countries: not France

LAST_DOWNLOAD

Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/eurostat/sts_inlb_m.RData")$mtime)) %>%
  print_table_conditional()
LAST_DOWNLOAD
2024-11-21

LAST_COMPILE

LAST_COMPILE
2024-11-22

Last

Code
sts_inlb_m %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2024M09 2645

nace_r2

Code
sts_inlb_m %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

s_adj

Code
sts_inlb_m %>%
  left_join(s_adj, by = "s_adj") %>%
  group_by(s_adj, S_adj) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
s_adj S_adj Nobs
SCA Seasonally and calendar adjusted data 911401
NSA Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) 798948
CA Calendar adjusted data, not seasonally adjusted data 569235

unit

Code
sts_inlb_m %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
unit Unit Nobs
I15 Index, 2015=100 671160
I21 Index, 2021=100 634619
I10 Index, 2010=100 398731
PCH_SM Percentage change compared to same period in previous year 318740
PCH_PRE Percentage change on previous period 256334

indic_bt

Code
sts_inlb_m %>%
  left_join(indic_bt, by = "indic_bt") %>%
  group_by(indic_bt, Indic_bt) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
indic_bt Indic_bt Nobs
WAGE Wages and salaries 993082
HW Hours worked by employees 761070
EMP Persons employed 525432

geo

Code
sts_inlb_m %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
sts_inlb_m %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

Individual Countries

Germany

Code
sts_inlb_m %>%
  filter(nace_r2 == "C",
         geo %in% c("FR", "DE", "IT"),
         s_adj == "SCA",
         unit == "I15") %>%
  select(geo, indic_bt, time, values) %>%
  group_by(indic_bt) %>%
  mutate(values = 100*values/values[time == "2000M01"]) %>%
  left_join(indic_bt, by = "indic_bt") %>%
  month_to_date %>%
  ggplot() + ylab("") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = values, color = Indic_bt)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.25, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(-60, 300, 10))

Portugal

Code
sts_inlb_m %>%
  filter(nace_r2 == "C",
         geo %in% c("PT"),
         s_adj == "SCA",
         unit == "I15") %>%
  select(geo, indic_bt, time, values) %>%
  group_by(indic_bt) %>%
  mutate(values = 100*values/values[time == "2000M01"]) %>%
  left_join(indic_bt, by = "indic_bt") %>%
  month_to_date %>%
  ggplot() + ylab("") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = values, color = Indic_bt)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.25, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(-60, 300, 10))

Austria

Code
sts_inlb_m %>%
  filter(nace_r2 == "C",
         geo %in% c("AT"),
         s_adj == "SCA",
         unit == "I15") %>%
  select(geo, indic_bt, time, values) %>%
  group_by(indic_bt) %>%
  mutate(values = 100*values/values[time == "2000M01"]) %>%
  left_join(indic_bt, by = "indic_bt") %>%
  month_to_date %>%
  ggplot() + ylab("") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = values, color = Indic_bt)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.25, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(-60, 300, 10))

Sweden

Code
sts_inlb_m %>%
  filter(nace_r2 == "C",
         geo %in% c("SE"),
         s_adj == "SCA",
         unit == "I15") %>%
  select(geo, indic_bt, time, values) %>%
  group_by(indic_bt) %>%
  mutate(values = 100*values/values[time == "2000M01"]) %>%
  left_join(indic_bt, by = "indic_bt") %>%
  month_to_date %>%
  ggplot() + ylab("") + xlab("") + theme_minimal() +
  geom_line(aes(x = date, y = values, color = Indic_bt)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  scale_x_date(breaks = seq(1920, 2025, 2) %>% paste0("-01-01") %>% as.Date,
               labels = date_format("%y")) +
  theme(legend.position = c(0.25, 0.85),
        legend.title = element_blank()) +
  scale_y_log10(breaks = seq(-60, 300, 10))