Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/eurostat/sts_cobp_m.RData")$mtime)) %>%
print_table_conditional()
LAST_DOWNLOAD |
---|
2024-12-29 |
Data - Eurostat
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/eurostat/sts_cobp_m.RData")$mtime)) %>%
print_table_conditional()
LAST_DOWNLOAD |
---|
2024-12-29 |
LAST_COMPILE |
---|
2024-12-29 |
%>%
sts_cobp_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024M11 | 44 |
%>%
sts_cobp_m left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
s_adj | S_adj | Nobs |
---|---|---|
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 203268 |
SCA | Seasonally and calendar adjusted data | 194089 |
%>%
sts_cobp_m left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
unit | Unit | Nobs |
---|---|---|
I21 | Index, 2021=100 | 133744 |
I15 | Index, 2015=100 | 132840 |
PCH_SM | Percentage change compared to same period in previous year | 66250 |
PCH_PRE | Percentage change on previous period | 64523 |
%>%
sts_cobp_m left_join(indic_bt, by = "indic_bt") %>%
group_by(indic_bt, Indic_bt) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
indic_bt | Indic_bt | Nobs |
---|---|---|
BPRM_SQM | Building permits - m2 of useful floor area | 285105 |
BPRM_DW | Building permits - number of dwellings | 112252 |
%>%
sts_cobp_m left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
sts_cobp_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()