Annual detailed enterprise statistics for industry (NACE Rev. 2, B-E) - sbs_na_ind_r2

Data - Eurostat

Info

LAST_DOWNLOAD

Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/eurostat/sbs_na_ind_r2.RData")$mtime)) %>%
  print_table_conditional()
LAST_DOWNLOAD
2024-10-08

LAST_COMPILE

LAST_COMPILE
2024-11-05

Last

Code
sbs_na_ind_r2 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2020 629422

nace_r2

Code
sbs_na_ind_r2 %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()

indic_sb

Code
sbs_na_ind_r2 %>%
  left_join(indic_sb, by = "indic_sb") %>%
  group_by(indic_sb, Indic_sb) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional

time

Code
sbs_na_ind_r2 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional
time Nobs
2020 629422
2019 648309
2018 679344
2017 681844
2016 679925
2015 674429
2014 672656
2013 673480
2012 652570
2011 652155
2010 608404
2009 625061
2008 589454
2007 29971
2006 28581
2005 27237

geo

Code
sbs_na_ind_r2 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}