Accrued-to-date pension entitlements in social insurance - nasa_10_pens1

Data - Eurostat

na_item

Code
nasa_10_pens1 %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

penscheme

Code
nasa_10_pens1 %>%
  left_join(penscheme, by = "penscheme") %>%
  group_by(penscheme, Penscheme) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
penscheme Penscheme Nobs
S1P Pension schemes (core and not core accounts) 4714
S12PBI Defined benefit schemes for general government employees classified in financial corporations 4356
S12P Private pension schemes 4338
S12PB Private defined benefit schemes 4304
S13PS Social security pension schemes (not in core accounts) 4290
S13PBI Defined benefit schemes for general government employees classified in general government (core accounts) 4142
S13PBX Defined benefit schemes for general government employees classified in general government (not in core accounts) 4124
S12PC Private defined contribution schemes 3992
S13PC Defined contribution schemes of general government (core accounts) 3926
S14R Counterparts: resident households 2770
S14NR Counterparts: non-resident households 2220
S1PF Private/Funded entitlements 140
S13PU Unfunded entitlements 138

geo

Code
nasa_10_pens1 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

unit

Code
nasa_10_pens1 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

D62_P, S1P

Code
nasa_10_pens1 %>%
  filter(geo %in% c("FR", "DE", "IT"),
         # D62_P: Social insurance pension benefits
         na_item == "D62_P",
         # S1P: Pension schemes (core and not core accounts)
         penscheme == "S1P",
         unit == "MIO_EUR") %>%
  year_to_date %>%
  ggplot + geom_line(aes(x = date, y = values/1000, color = geo)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  theme_minimal()  +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("") +
  scale_y_log10(breaks = seq(0, 1000, 100),
                labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))