Accrued-to-date pension entitlements in social insurance - nasa_10_pens1

Data - Eurostat

na_item

Code
nasa_10_pens1 %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

penscheme

Code
nasa_10_pens1 %>%
  left_join(penscheme, by = "penscheme") %>%
  group_by(penscheme, Penscheme) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
penscheme Penscheme Nobs
S1P Pension schemes (core and not core accounts) 4420
S13PS Social security pension schemes (not in core accounts) 4014
S12P Private pension schemes 3742
S12PB Private defined benefit schemes 3432
S12PC Private defined contribution schemes 3418
S13PBX Defined benefit schemes for general government employees classified in general government (not in core accounts) 3406
S12PBI Defined benefit schemes for general government employees classified in financial corporations 3164
S13PBI Defined benefit schemes for general government employees classified in general government (core accounts) 2768
S13PC Defined contribution schemes of general government (core accounts) 2750
S14R Counterparts: resident households 2480
S14NR Counterparts: non-resident households 1756
S1PF Private/Funded entitlements 132
S13PU Unfunded entitlements 130

geo

Code
nasa_10_pens1 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

unit

Code
nasa_10_pens1 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

D62_P, S1P

Code
nasa_10_pens1 %>%
  filter(geo %in% c("FR", "DE", "IT"),
         # D62_P: Social insurance pension benefits
         na_item == "D62_P",
         # S1P: Pension schemes (core and not core accounts)
         penscheme == "S1P",
         unit == "MIO_EUR") %>%
  year_to_date %>%
  ggplot + geom_line(aes(x = date, y = values/1000, color = geo)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  theme_minimal()  +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("") +
  scale_y_log10(breaks = seq(0, 1000, 100),
                labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))