Accrued-to-date pension entitlements in social insurance - nasa_10_pens1

Data - Eurostat

na_item

Code
nasa_10_pens1 %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

penscheme

Code
nasa_10_pens1 %>%
  left_join(penscheme, by = "penscheme") %>%
  group_by(penscheme, Penscheme) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
penscheme Penscheme Nobs
S1P Pension schemes (core and not core accounts) 4476
S13PS Social security pension schemes (not in core accounts) 4064
S12P Private pension schemes 3790
S12PC Private defined contribution schemes 3466
S13PBX Defined benefit schemes for general government employees classified in general government (not in core accounts) 3434
S12PB Private defined benefit schemes 3432
S12PBI Defined benefit schemes for general government employees classified in financial corporations 3164
S13PC Defined contribution schemes of general government (core accounts) 2776
S13PBI Defined benefit schemes for general government employees classified in general government (core accounts) 2768
S14R Counterparts: resident households 2504
S14NR Counterparts: non-resident households 1778
S1PF Private/Funded entitlements 134
S13PU Unfunded entitlements 132

geo

Code
nasa_10_pens1 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

unit

Code
nasa_10_pens1 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

D62_P, S1P

Code
nasa_10_pens1 %>%
  filter(geo %in% c("FR", "DE", "IT"),
         # D62_P: Social insurance pension benefits
         na_item == "D62_P",
         # S1P: Pension schemes (core and not core accounts)
         penscheme == "S1P",
         unit == "MIO_EUR") %>%
  year_to_date %>%
  ggplot + geom_line(aes(x = date, y = values/1000, color = geo)) +
  scale_color_manual(values = viridis(4)[1:3]) +
  theme_minimal()  +
  scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 5), "-01-01")),
               labels = date_format("%y")) +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  xlab("") + ylab("") +
  scale_y_log10(breaks = seq(0, 1000, 100),
                labels = dollar_format(suffix = " Bn€", prefix = "", accuracy = 1))