Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/eurostat/namq_10_fcs.RData")$mtime)) %>%
print_table_conditional()
LAST_DOWNLOAD |
---|
2024-10-08 |
Data - Eurostat
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/eurostat/namq_10_fcs.RData")$mtime)) %>%
print_table_conditional()
LAST_DOWNLOAD |
---|
2024-10-08 |
LAST_COMPILE |
---|
2024-12-29 |
%>%
namq_10_fcs group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024Q2 | 5414 |
%>%
namq_10_fcs left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
na_item | Na_item | Nobs |
---|---|---|
P31_S14 | Final consumption expenditure of households | 135818 |
P311_S14 | Final consumption expenditure of households, durable goods | 129228 |
P312N_S14 | Final consumption expenditure of households, semi-durable goods, non-durable goods and services | 129228 |
P312_S14 | Final consumption expenditure of households, semi-durable goods | 106379 |
P313_S14 | Final consumption expenditure of households, non-durable goods | 106379 |
P314_S14 | Final consumption expenditure of households, services | 106379 |
%>%
namq_10_fcs left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
s_adj | S_adj | Nobs |
---|---|---|
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 324422 |
SCA | Seasonally and calendar adjusted data | 293178 |
CA | Calendar adjusted data, not seasonally adjusted data | 65886 |
SA | Seasonally adjusted data, not calendar adjusted data | 29925 |
%>%
namq_10_fcs left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
unit | Unit | Nobs |
---|---|---|
CLV15_MEUR | Chain linked volumes (2015), million euro | 50080 |
CLV15_MNAC | Chain linked volumes (2015), million units of national currency | 50080 |
CLV_I15 | Chain linked volumes, index 2015=100 | 50080 |
CP_MEUR | Current prices, million euro | 49552 |
CP_MNAC | Current prices, million units of national currency | 49552 |
CLV10_MEUR | Chain linked volumes (2010), million euro | 48916 |
CLV10_MNAC | Chain linked volumes (2010), million units of national currency | 48916 |
CLV_I10 | Chain linked volumes, index 2010=100 | 48916 |
CLV05_MEUR | Chain linked volumes (2005), million euro | 48028 |
CLV05_MNAC | Chain linked volumes (2005), million units of national currency | 48028 |
CLV_I05 | Chain linked volumes, index 2005=100 | 48028 |
PC_GDP | Percentage of gross domestic product (GDP) | 47986 |
CLV_PCH_SM | Chain linked volumes, percentage change compared to same period in previous year | 47244 |
PYP_MEUR | Previous year prices, million euro | 27910 |
PYP_MNAC | Previous year prices, million units of national currency | 27910 |
CLV_PCH_PRE | Chain linked volumes, percentage change on previous period | 22185 |
%>%
namq_10_fcs left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
namq_10_fcs group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
%>%
namq_10_fcs filter(geo == "FR",
== "2021Q4",
time == "NSA") %>%
s_adj select_if(~ n_distinct(.) > 1) %>%
left_join(unit, by = "unit") %>%
left_join(na_item, by = "na_item") %>%
mutate(Na_item = paste0(na_item, " - ", Na_item)) %>%
select(-na_item) %>%
spread(Na_item, values) %>%
print_table_conditional()
unit | Unit | P31_S14 - Final consumption expenditure of households | P311_S14 - Final consumption expenditure of households, durable goods | P312_S14 - Final consumption expenditure of households, semi-durable goods | P312N_S14 - Final consumption expenditure of households, semi-durable goods, non-durable goods and services | P313_S14 - Final consumption expenditure of households, non-durable goods | P314_S14 - Final consumption expenditure of households, services |
---|---|---|---|---|---|---|---|
CLV_I05 | Chain linked volumes, index 2005=100 | 122.820 | 146.760 | 114.198 | 120.678 | 112.609 | 126.470 |
CLV_I10 | Chain linked volumes, index 2010=100 | 114.269 | 122.326 | 112.157 | 113.597 | 108.092 | 116.907 |
CLV_I15 | Chain linked volumes, index 2015=100 | 110.134 | 119.906 | 110.762 | 109.296 | 107.287 | 110.057 |
CLV_PCH_SM | Chain linked volumes, percentage change compared to same period in previous year | 7.400 | -1.200 | 8.300 | 8.200 | 0.300 | 13.100 |
CLV05_MEUR | Chain linked volumes (2005), million euro | 288094.300 | 33302.800 | 28008.500 | 255686.100 | 75416.900 | 152238.500 |
CLV05_MNAC | Chain linked volumes (2005), million units of national currency | 288094.300 | 33302.800 | 28008.500 | 255686.100 | 75416.900 | 152238.500 |
CLV10_MEUR | Chain linked volumes (2010), million euro | 306706.300 | 29478.800 | 28530.900 | 277526.000 | 83217.300 | 165870.200 |
CLV10_MNAC | Chain linked volumes (2010), million units of national currency | 306706.300 | 29478.800 | 28530.900 | 277526.000 | 83217.300 | 165870.200 |
CLV15_MEUR | Chain linked volumes (2015), million euro | 319296.700 | 28012.300 | 29188.700 | 291331.700 | 89658.600 | 172384.700 |
CLV15_MNAC | Chain linked volumes (2015), million units of national currency | 319296.700 | 28012.300 | 29188.700 | 291331.700 | 89658.600 | 172384.700 |
CP_MEUR | Current prices, million euro | 341598.900 | 28056.700 | 29887.300 | 313542.200 | 101783.200 | 181871.600 |
CP_MNAC | Current prices, million units of national currency | 341598.900 | 28056.700 | 29887.300 | 313542.200 | 101783.200 | 181871.600 |
PC_GDP | Percentage of gross domestic product (GDP) | 51.400 | 4.200 | 4.500 | 47.200 | 15.300 | 27.400 |
PYP_MEUR | Previous year prices, million euro | 333721.400 | 27104.100 | 28845.700 | 306617.300 | 97996.400 | 179775.200 |
PYP_MNAC | Previous year prices, million units of national currency | 333721.400 | 27104.100 | 28845.700 | 306617.300 | 97996.400 | 179775.200 |
%>%
namq_10_fcs filter(geo %in% c("FR", "EA", "ES", "IT", "DE"),
== "PC_GDP",
unit == "NSA",
s_adj == "P31_S14") %>%
na_item %>%
quarter_to_date mutate(values = values / 100) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "EA", "Europe", Geo)) %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "EA", color2, color)) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags + xlab("") +
ylab("Final consumption expenditure of households (% of GDP)") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-30, 100, 2),
labels = percent_format(a = 1))
%>%
namq_10_fcs filter(geo %in% c("FR", "NL", "ES", "IT", "DE"),
== "PC_GDP",
unit == "NSA",
s_adj == "P31_S14") %>%
na_item %>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(values = values / 100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "NL", color2, color)) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags + xlab("") +
ylab("Final consumption expenditure of households (% of GDP)") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-30, 100, 2),
labels = percent_format(a = 1))
%>%
namq_10_fcs filter(geo %in% c("FR", "NL", "ES", "IT", "DE"),
== "PC_GDP",
unit == "NSA",
s_adj == "P311_S14") %>%
na_item %>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(values = values / 100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "NL", color2, color)) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags + xlab("") +
ylab("Durable goods (% of GDP)") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-30, 100, 1),
labels = percent_format(a = 1))
%>%
namq_10_fcs filter(geo %in% c("FR", "NL", "ES", "IT", "DE"),
== "PC_GDP",
unit == "NSA",
s_adj == "P313_S14") %>%
na_item %>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(values = values / 100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "NL", color2, color)) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags + xlab("") +
ylab("Non-durable goods (% of GDP)") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-30, 100, 1),
labels = percent_format(a = 1))
%>%
namq_10_fcs filter(geo %in% c("FR", "NL", "ES", "IT", "DE"),
== "PC_GDP",
unit == "NSA",
s_adj == "P314_S14") %>%
na_item %>%
quarter_to_date filter(date >= as.Date("1995-01-01")) %>%
mutate(values = values / 100) %>%
left_join(geo, by = "geo") %>%
left_join(colors, by = c("Geo" = "country")) %>%
mutate(color = ifelse(geo == "NL", color2, color)) %>%
+ geom_line(aes(x = date, y = values, color = color)) +
ggplot scale_color_identity() + theme_minimal() + add_4flags + xlab("") +
ylab("Services (% of GDP)") +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2022, 5), "-01-01")),
labels = date_format("%Y")) +
scale_y_continuous(breaks = 0.01*seq(-30, 100, 1),
labels = percent_format(a = 1))