Gross domestic product (GDP) at current market prices by NUTS 3 regions - nama_10r_3gdp

Data - Eurostat

Info

LAST_DOWNLOAD

Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/eurostat/nama_10r_3gdp.RData")$mtime)) %>%
  print_table_conditional()
LAST_DOWNLOAD
2024-10-08

LAST_COMPILE

LAST_COMPILE
2024-11-05

Last

Code
nama_10r_3gdp %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2022 4566

unit

Code
nama_10r_3gdp %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional()
unit Unit Nobs
MIO_EUR Million euro 39154
MIO_NAC Million units of national currency 39154
MIO_PPS_EU27_2020 Million purchasing power standards (PPS, EU27 from 2020) 39154
EUR_HAB Euro per inhabitant 37758
EUR_HAB_EU27_2020 Euro per inhabitant in percentage of the EU27 (from 2020) average 37758
PPS_EU27_2020_HAB Purchasing power standard (PPS, EU27 from 2020), per inhabitant 37758
PPS_HAB_EU27_2020 Purchasing power standard (PPS, EU27 from 2020), per inhabitant in percentage of the EU27 (from 2020) average 37758

geo

Code
nama_10r_3gdp %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
nama_10r_3gdp %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2022 4566
2021 12313
2020 12313
2019 12453
2018 12446
2017 12439
2016 12439
2015 12439
2014 12453
2013 12313
2012 12313
2011 12313
2010 12313
2009 12313
2008 12313
2007 11941
2006 11941
2005 11913
2004 11913
2003 11073
2002 10658
2001 10658
2000 10658

Table - Per Inhabitant

Code
nama_10r_3gdp %>%
  filter(time == "2017",
         unit %in% c("EUR_HAB", "PPS_EU27_2020_HAB")) %>%
  select(geo, unit, values) %>%
  left_join(geo, by = "geo") %>%
  spread(unit, values) %>%
  arrange(-`EUR_HAB`) %>%
  print_table_conditional()

NUTS 0

Code
nama_10r_3gdp %>%
  filter(time == "2016", 
         nchar(geo) == 2,
         unit == "EUR_HAB") %>%
  right_join(europe_NUTS0, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(0, 200, 10),
                       values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "€ / inhabitant")

NUTS 1

EUR_HAB

Code
nama_10r_3gdp %>%
  filter(time == "2016", 
         nchar(geo) == 3,
         unit == "EUR_HAB") %>%
  right_join(europe_NUTS1, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(0, 200, 10),
                       values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "€ / inhabitant")

PPS_EU27_2020_HAB

Code
nama_10r_3gdp %>%
  filter(time == "2016", 
         nchar(geo) == 3,
         unit == "PPS_EU27_2020_HAB") %>%
  right_join(europe_NUTS1, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(0, 200, 10),
                       values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "€ / inhabitant")

NUTS 2

EUR_HAB

Code
nama_10r_3gdp %>%
  filter(time == "2016", 
         nchar(geo) == 4,
         unit == "EUR_HAB") %>%
  right_join(europe_NUTS2, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(0, 200, 20),
                       values = c(0, 0.05, 0.1, 0.15, 0.2, 0.25, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "€ / inhabitant")

PPS_EU27_2020_HAB

Code
nama_10r_3gdp %>%
  filter(time == "2016", 
         nchar(geo) == 4,
         unit == "PPS_EU27_2020_HAB") %>%
  right_join(europe_NUTS2, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(0, 200, 20),
                       values = c(0, 0.05, 0.1, 0.15, 0.2, 0.25, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "€ / inhabitant")

NUTS 3

2016

Code
nama_10r_3gdp %>%
  filter(time == "2016", 
         nchar(geo) == 5,
         unit == "EUR_HAB") %>%
  right_join(europe_NUTS3, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(0, 600, 50),
                       values = c(0, 0.02, 0.04, 0.06, 0.08, 0.1, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "€ / inhabitant")

2019

Code
nama_10r_3gdp %>%
  filter(time == "2019", 
         nchar(geo) == 5,
         unit == "EUR_HAB") %>%
  right_join(europe_NUTS3, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(10, 250, 30),
                       values = c(0, 0.1, 0.15, 0.2, 0.25, 0.3,0.35, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "PIB / habitant, 2019\n(milliers €)\n")

2018

Code
nama_10r_3gdp %>%
  filter(time == "2018", 
         nchar(geo) == 5,
         unit == "EUR_HAB") %>%
  right_join(europe_NUTS3, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = seq(10, 250, 30),
                       values = c(0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 1)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "PIB / habitant\n(milliers €)\n")

NUTS 3 - Log

Code
nama_10r_3gdp %>%
  filter(time == "2016", 
         nchar(geo) == 5,
         unit == "EUR_HAB") %>%
  right_join(europe_NUTS3, by = "geo") %>%
  filter(long >= -15, lat >= 33) %>%
  ggplot(., aes(x = long, y = lat, group = group, fill = values/1000)) +
  geom_polygon() + coord_map() +
  scale_fill_viridis_c(na.value = "white",
                       labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
                       breaks = c(1, 2, 3, 5, 10, 20, 30, 50, 100, 200, 300, 1000),
                       trans = scales::pseudo_log_trans(sigma = 0.001)) +
  theme_void() + theme(legend.position = c(0.25, 0.85)) + 
  labs(fill = "€ / inhabitant")