nama_10r_2hhinc %>%
filter(time == "2015",
nchar(geo) == 4,
direct == "BAL",
na_item == "B6N") %>%
select(geo, value_added = values) %>%
full_join(nama_10r_3empers %>%
filter(time == "2015",
nchar(geo) == 4,
wstatus == "EMP",
nace_r2 == "TOTAL") %>%
select(geo, employment = values),
by = "geo") %>%
mutate(value = round(1000*value_added / employment)) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, value) %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -15, lat >= 33, value <= 80000) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = value/1000)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = " k€"),
breaks = c(seq(0, 80, 10), 100, 200),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "Compensation / Person")