Info
LAST_DOWNLOAD
Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/Library/Mobile\ Documents/com~apple~CloudDocs/website/data/eurostat/mar_mg_am_pwhc.RData")$mtime)) %>%
print_table_conditional()
Last
Code
mar_mg_am_pwhc %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
cargo
Code
mar_mg_am_pwhc %>%
left_join(cargo, by = "cargo") %>%
group_by(cargo, Cargo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
DBK |
Dry bulk goods |
1138 |
OTH |
Other cargo not elsewhere specified |
1138 |
TOTAL |
Total |
1138 |
LBK |
Liquid bulk goods |
1136 |
LCNT |
Large containers |
1114 |
RO_MSP |
Ro-Ro - mobile self-propelled units |
1034 |
RO_MNSP |
Ro-Ro - mobile non-self-propelled units |
868 |
UNK |
Unknown |
42 |
unit
Code
mar_mg_am_pwhc %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
PC_TOT |
Percentage of total |
3804 |
THS_T |
Thousand tonnes |
3804 |
rep_mar
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
group_by(rep_mar, Rep_mar) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
time
Code
mar_mg_am_pwhc %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}
Top 20 Ports
Ports of the Europe by annual cargo tonnage
Code
i_g("bib/industrie/top-20-ports.png")
Conteneurs
2019
Code
mar_mg_am_pwhc %>%
filter(unit == "THS_T",
time == "2019",
cargo == "TOTAL") %>%
left_join(rep_mar, by = "rep_mar") %>%
select(rep_mar, Rep_mar, values) %>%
arrange(-values) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
2020
Code
mar_mg_am_pwhc %>%
filter(unit == "THS_T",
time == "2020",
cargo == "TOTAL") %>%
left_join(rep_mar, by = "rep_mar") %>%
select(rep_mar, Rep_mar, values) %>%
arrange(-values) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
Marseille, Antwerpen, Hamburg, Rotterdam
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T",
Rep_mar %in% c("Rotterdam", "Antwerpen", "Hamburg", "Marseille")) %>%
year_to_date %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 20, 1))
FR_2FRMRS
Antwerpen, Hamburg, Rotterdam
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T",
Rep_mar %in% c("Rotterdam", "Antwerpen", "Hamburg")) %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 20, 1))
Peiraias, Valencia, Algeciras
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T",
Rep_mar %in% c("Peiraias", "Valencia", "Algeciras")) %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 20, 1))
Bremerhaven, Felixstowe, Barcelona
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T",
Rep_mar %in% c("Bremerhaven", "Felixstowe", "Barcelona")) %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
theme(legend.position = c(0.1, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 20, 1))
Ambarli, Gioia Tauro, Le Havre
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T",
Rep_mar %in% c("Ambarli", "Gioia Tauro", "Le Havre")) %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
theme(legend.position = c(0.1, 0.85),
legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 20, .5))
All ports
Linear
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T") %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
group_by(Rep_mar) %>%
arrange(date) %>%
mutate(values = 100*values/values[1]) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
#scale_color_manual(values = viridis(13)[1:12]) +
theme(legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 300, 10))
Largest
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T") %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
group_by(Rep_mar) %>%
filter(n() == 18) %>%
arrange(date) %>%
filter(values[date == as.Date("2022-01-01")] > 40) %>%
mutate(values = 100*values/values[1]) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Gross weight of goods handled in each port vs. 2005") +
#scale_color_manual(values = viridis(13)[1:12]) +
theme(legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(10, 300, 10),
labels = percent(0.01*seq(10, 300, 10)-1, 2)) +
geom_text_repel(data = . %>% filter(date ==as.Date("2022-01-01")), aes(x = date, y = values, label = Rep_mar, color = Rep_mar))
12 ports
Linear
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T",
Rep_mar %in% c("Rotterdam", "Antwerpen", "Hamburg",
"Peiraias", "Valencia", "Algeciras",
"Bremerhaven", "Felixstowe", "Barcelona",
"Ambarli", "Gioia Tauro", "Le Havre")) %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
mutate(Rep_mar = factor(Rep_mar, c("Rotterdam", "Antwerpen", "Hamburg",
"Peiraias", "Valencia", "Algeciras",
"Bremerhaven", "Felixstowe", "Barcelona",
"Ambarli", "Gioia Tauro", "Le Havre"))) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
#scale_color_manual(values = viridis(13)[1:12]) +
theme(legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(0, 20, 1))
Log
Code
mar_mg_am_pwhc %>%
left_join(rep_mar, by = "rep_mar") %>%
filter(cargo == "TOTAL",
unit == "THS_T",
Rep_mar %in% c("Rotterdam", "Antwerpen", "Hamburg",
"Peiraias", "Valencia", "Algeciras",
"Bremerhaven", "Felixstowe", "Barcelona",
"Ambarli", "Gioia Tauro", "Le Havre")) %>%
year_to_date %>%
mutate(values = values / 10^3) %>%
mutate(Rep_mar = factor(Rep_mar, c("Rotterdam", "Antwerpen", "Hamburg",
"Peiraias", "Valencia", "Algeciras",
"Bremerhaven", "Felixstowe", "Barcelona",
"Ambarli", "Gioia Tauro", "Le Havre"))) %>%
ggplot + geom_line(aes(x = date, y = values, color = Rep_mar)) +
theme_minimal() + xlab("") + ylab("Volumes des conteneurs (Millions EVP)") +
#scale_color_manual(values = viridis(13)[1:12]) +
theme(legend.title = element_blank()) +
scale_x_date(breaks = seq(1940, 2100, 2) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_log10(breaks = seq(0, 20, 1))