Code
lfst_r_lfur2gan %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| PC | Percentage | 883742 |
Data - Eurostat
lfst_r_lfur2gan %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| PC | Percentage | 883742 |
lfst_r_lfur2gan %>%
left_join(citizen, by = "citizen") %>%
group_by(citizen, Citizen) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| citizen | Citizen | Nobs |
|---|---|---|
| TOTAL | Total | 175200 |
| NAT | Reporting country | 156671 |
| FOR | Foreign country | 154280 |
| NEU27_2020_FOR | Non-EU27 countries (from 2020) nor reporting country | 151824 |
| EU27_2020_FOR | EU27 countries (from 2020) except reporting country | 147860 |
| NRP | No response | 54133 |
| STLS | Stateless | 43774 |
lfst_r_lfur2gan %>%
left_join(sex, by = "sex") %>%
group_by(sex, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| sex | Sex | Nobs |
|---|---|---|
| T | Total | 299999 |
| M | Males | 292427 |
| F | Females | 291316 |
lfst_r_lfur2gan %>%
left_join(age, by = "age") %>%
group_by(age, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| age | Age | Nobs |
|---|---|---|
| Y15-74 | From 15 to 74 years | 181475 |
| Y15-64 | From 15 to 64 years | 180890 |
| Y20-64 | From 20 to 64 years | 180463 |
| Y25-54 | From 25 to 54 years | 178195 |
| Y55-64 | From 55 to 64 years | 162719 |
lfst_r_lfur2gan %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}lfst_r_lfur2gan %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}lfst_r_lfur2gan %>%
filter(unit == "PC",
citizen == "FOR",
sex == "T",
age == "Y15-74",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(20, 100, 5),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.8, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Unemployment (%) \nForeign country")
lfst_r_lfur2gan %>%
filter(unit == "PC",
citizen == "FOR",
sex == "T",
age == "Y15-64",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(20, 100, 5),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.8, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Unemployment (%) \nForeign country")
lfst_r_lfur2gan %>%
filter(unit == "PC",
citizen == "NAT",
sex == "T",
age == "Y15-74",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 100, 5),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.8, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Unemployment (%) \nNational country")