Code
%>%
lfst_r_lfur2gac left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
PC | Percentage | 812409 |
Data - Eurostat
%>%
lfst_r_lfur2gac left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
PC | Percentage | 812409 |
%>%
lfst_r_lfur2gac group_by(c_birth) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
c_birth | Nobs |
---|---|
TOTAL | 168405 |
NAT | 156768 |
FOR | 155269 |
NEU27_2020_FOR | 139825 |
EU27_2020_FOR | 136645 |
NRP | 55497 |
%>%
lfst_r_lfur2gac left_join(sex, by = "sex") %>%
group_by(sex, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
sex | Sex | Nobs |
---|---|---|
T | Total | 273484 |
F | Females | 269543 |
M | Males | 269382 |
%>%
lfst_r_lfur2gac left_join(age, by = "age") %>%
group_by(age, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
age | Age | Nobs |
---|---|---|
Y15-74 | From 15 to 74 years | 165283 |
Y15-64 | From 15 to 64 years | 164821 |
Y20-64 | From 20 to 64 years | 164231 |
Y25-54 | From 25 to 54 years | 162323 |
Y55-64 | From 55 to 64 years | 155751 |
%>%
lfst_r_lfur2gac left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
lfst_r_lfur2gac group_by(time) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
lfst_r_lfur2gac filter(c_birth == "TOTAL",
== "T",
sex == "Y20-64",
age nchar(geo) == 4,
== "2019") %>%
time right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 100, 5),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Chômage")
%>%
lfst_r_lfur2gac filter(c_birth == "FOR",
== "T",
sex == "Y20-64",
age nchar(geo) == 4,
== "2018") %>%
time right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 100, 5),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Chômage (né étranger)")
%>%
lfst_r_lfur2gac filter(c_birth == "TOTAL",
== "T",
sex == "Y25-54",
age nchar(geo) == 4,
== "2019") %>%
time right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 100, 5),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Chômage")