citizen
Code
lfst_r_lfe2emprtn %>%
left_join(citizen, by = "citizen") %>%
group_by(citizen, Citizen) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TOTAL |
Total |
592922 |
NAT |
Reporting country |
535401 |
FOR |
Foreign country |
493005 |
NEU27_2020_FOR |
Non-EU27 countries (from 2020) nor reporting country |
471755 |
EU27_2020_FOR |
EU27 countries (from 2020) except reporting country |
449218 |
NRP |
No response |
144194 |
STLS |
Stateless |
92341 |
isced11
Code
lfst_r_lfe2emprtn %>%
left_join(isced11, by = "isced11") %>%
group_by(isced11, Isced11) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
TOTAL |
All ISCED 2011 levels |
677021 |
ED3_4 |
Upper secondary and post-secondary non-tertiary education (levels 3 and 4) |
637295 |
ED0-2 |
Less than primary, primary and lower secondary education (levels 0-2) |
621080 |
ED5-8 |
Tertiary education (levels 5-8) |
618930 |
NRP |
No response |
224450 |
UNK |
Unknown |
60 |
unit
Code
lfst_r_lfe2emprtn %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
print_table_conditional()
sex
Code
lfst_r_lfe2emprtn %>%
left_join(sex, by = "sex") %>%
group_by(sex, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
T |
Total |
953991 |
F |
Females |
912432 |
M |
Males |
912413 |
age
Code
lfst_r_lfe2emprtn %>%
left_join(age, by = "age") %>%
group_by(age, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}
Y15-64 |
From 15 to 64 years |
736839 |
Y20-64 |
From 20 to 64 years |
721146 |
Y25-54 |
From 25 to 54 years |
706995 |
Y55-64 |
From 55 to 64 years |
613856 |
geo
Code
lfst_r_lfe2emprtn %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../icon/flag/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}
time
Code
lfst_r_lfe2emprtn %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
2023 |
104732 |
2022 |
104172 |
2021 |
104314 |
2020 |
106799 |
2019 |
123415 |
2018 |
123983 |
2017 |
124314 |
2016 |
123897 |
2015 |
124051 |
2014 |
124070 |
2013 |
123260 |
2012 |
119978 |
2011 |
119646 |
2010 |
120590 |
2009 |
117464 |
2008 |
118201 |
2007 |
117346 |
2006 |
113871 |
2005 |
106285 |
2004 |
99191 |
2003 |
96159 |
2002 |
95288 |
2001 |
92733 |
2000 |
87583 |
1999 |
87494 |
Education: levels 0-2
Code
lfst_r_lfe2emprtn %>%
filter(unit == "PC",
sex == "T",
isced11 == "ED0-2",
citizen == "TOTAL",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(20, 100, 10),
values = c(0, 0.1, 0.3, 0.4, 0.5, 0.6, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Employment \nPrimary Education (%)")
Upper secondary and post-secondary non-tertiary education (levels 3 and 4)
Education: levels 3-4
Code
lfst_r_lfe2emprtn %>%
filter(unit == "PC",
sex == "T",
isced11 == "ED3_4",
citizen == "TOTAL",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(20, 100, 10),
values = c(0, 0.1, 0.3, 0.4, 0.5, 0.6, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Employment \nSecondary Education (%)")
Education: levels 5-8
Code
lfst_r_lfe2emprtn %>%
filter(unit == "PC",
sex == "T",
isced11 == "ED5-8",
citizen == "TOTAL",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(20, 100, 10),
values = c(0, 0.1, 0.3, 0.4, 0.5, 0.6, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Employment \nTertiary Education (%)")