Code
lfst_r_egad %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| PC | Percentage | 1340414 |
| THS_PER | Thousand persons | 1340414 |
Data - Eurostat
lfst_r_egad %>%
left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| unit | Unit | Nobs |
|---|---|---|
| PC | Percentage | 1340414 |
| THS_PER | Thousand persons | 1340414 |
lfst_r_egad %>%
left_join(duration, by = "duration") %>%
group_by(duration, Duration) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| duration | Duration | Nobs |
|---|---|---|
| TOTAL | Total | 490308 |
| M_GE60 | 60 months or over | 486020 |
| M24-59 | From 24 to 59 months | 478546 |
| M0-11 | From 0 to 11 months | 474596 |
| M12-23 | From 12 to 23 months | 470490 |
| NRP | No response | 280868 |
lfst_r_egad %>%
left_join(sex, by = "sex") %>%
group_by(sex, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| sex | Sex | Nobs |
|---|---|---|
| T | Total | 902884 |
| M | Males | 894574 |
| F | Females | 883370 |
lfst_r_egad %>%
left_join(age, by = "age") %>%
group_by(age, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| age | Age | Nobs |
|---|---|---|
| Y_GE15 | 15 years or over | 392618 |
| Y15-74 | From 15 to 74 years | 392588 |
| Y15-64 | From 15 to 64 years | 392466 |
| Y20-64 | From 20 to 64 years | 392274 |
| Y25-64 | From 25 to 64 years | 391784 |
| Y15-24 | From 15 to 24 years | 382712 |
| Y65-74 | From 65 to 74 years | 336386 |
lfst_r_egad %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}lfst_r_egad %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}lfst_r_egad %>%
filter(unit == "PC",
duration == "M_GE60",
sex == "T",
age == "Y_GE15",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(20, 100, 5),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.8, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Employment (%) \nLong-Term (60m+), Age 15+")
lfst_r_egad %>%
filter(unit == "PC",
duration == "M24-59",
sex == "T",
age == "Y_GE15",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 100, 5),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.8, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Employment (%) \nMedium-Term (24-59), Age 15+")
lfst_r_egad %>%
filter(unit == "PC",
duration == "M12-23",
sex == "T",
age == "Y_GE15",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 100, 2),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.8, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Employment (%) \nLong-Term (60m+), Age 15+")
lfst_r_egad %>%
filter(unit == "PC",
duration == "M0-11",
sex == "T",
age == "Y_GE15",
nchar(geo) == 4,
time == "2018") %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -13.5, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values/100)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::percent_format(accuracy = 1),
breaks = 0.01*seq(0, 100, 5),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.8, 1)) +
theme_void() + theme(legend.position = c(0.15, 0.85)) +
labs(fill = "Employment (%) \nShort-Term (M0-11), Age 15+")