Code
%>%
lfsq_ewhun2 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
HR | Hour | 27501425 |
Data - Eurostat
%>%
lfsq_ewhun2 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
HR | Hour | 27501425 |
%>%
lfsq_ewhun2 left_join(sex, by = "sex") %>%
group_by(sex, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
sex | Sex | Nobs |
---|---|---|
T | Total | 9809488 |
M | Males | 9003456 |
F | Females | 8688481 |
%>%
lfsq_ewhun2 left_join(worktime, by = "worktime") %>%
group_by(worktime, Worktime) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
worktime | Worktime | Nobs |
---|---|---|
TOTAL | Total | 9926827 |
FT | Full-time | 9559013 |
PT | Part-time | 7679536 |
NRP | No response | 336049 |
%>%
lfsq_ewhun2 left_join(wstatus, by = "wstatus") %>%
group_by(wstatus, Wstatus) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
wstatus | Wstatus | Nobs |
---|---|---|
EMP | Employed persons | 4499703 |
NCFAM | Employed persons except contributing family workers | 4488540 |
SAL | Employees | 4415618 |
NSAL | Employed persons except employees | 3415942 |
SELF | Self-employed persons | 3353481 |
SELF_NS | Self-employed persons without employees (own-account workers) | 3168192 |
SELF_S | Self-employed persons with employees (employers) | 2504236 |
CFAM | Contributing family workers | 1528285 |
NRP | No response | 127428 |
%>%
lfsq_ewhun2 left_join(nace_r2, by = "nace_r2") %>%
group_by(nace_r2, Nace_r2) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
nace_r2 | Nace_r2 | Nobs |
---|---|---|
TOTAL | Total - all NACE activities | 1785826 |
G | Wholesale and retail trade; repair of motor vehicles and motorcycles | 1583335 |
A | Agriculture, forestry and fishing | 1561220 |
C | Manufacturing | 1479714 |
M | Professional, scientific and technical activities | 1474359 |
I | Accommodation and food service activities | 1453910 |
S | Other service activities | 1427163 |
F | Construction | 1424475 |
Q | Human health and social work activities | 1406019 |
N | Administrative and support service activities | 1373372 |
H | Transportation and storage | 1342989 |
R | Arts, entertainment and recreation | 1342026 |
P | Education | 1326985 |
J | Information and communication | 1298946 |
K | Financial and insurance activities | 1181646 |
L | Real estate activities | 1178110 |
E | Water supply; sewerage, waste management and remediation activities | 886953 |
O | Public administration and defence; compulsory social security | 854408 |
T | Activities of households as employers; undifferentiated goods- and services-producing activities of households for own use | 770276 |
D | Electricity, gas, steam and air conditioning supply | 753250 |
B | Mining and quarrying | 632292 |
NRP | No response | 561718 |
U | Activities of extraterritorial organisations and bodies | 402433 |
%>%
lfsq_ewhun2 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
lfsq_ewhun2 filter(geo %in% c("FR", "DE", "PT"),
== "TOTAL",
nace_r2 == "SAL",
wstatus == "T",
sex == "TOTAL") %>%
worktime %>%
quarter_to_date left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = values, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 1), "-01-01")),
labels = date_format("%y")) +
scale_y_continuous(breaks = seq(0, 44, 1)) +
theme(legend.position = c(0.3, 0.85),
legend.title = element_blank()) +
xlab("") + ylab("Hours worked per week of part-time employment")
%>%
lfsq_ewhun2 filter(geo %in% c("FR", "IT", "EL"),
== "TOTAL",
nace_r2 == "SAL",
wstatus == "T",
sex == "TOTAL") %>%
worktime %>%
quarter_to_date left_join(geo, by = "geo") %>%
+ geom_line() + theme_minimal() +
ggplot aes(x = date, y = values, color = Geo, linetype = Geo) +
scale_color_manual(values = viridis(4)[1:3]) +
scale_x_date(breaks = as.Date(paste0(seq(1960, 2020, 1), "-01-01")),
labels = date_format("%y")) +
scale_y_continuous(breaks = seq(0, 50, 0.5)) +
theme(legend.position = c(0.15, 0.55),
legend.title = element_blank()) +
xlab("") + ylab("Hours worked per week of part-time employment")