Code
%>%
ilc_mded01 left_join(hhtyp, by = "hhtyp") %>%
group_by(hhtyp, Hhtyp) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
Data - Eurostat
%>%
ilc_mded01 left_join(hhtyp, by = "hhtyp") %>%
group_by(hhtyp, Hhtyp) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
ilc_mded01 left_join(incgrp, by = "incgrp") %>%
group_by(incgrp, Incgrp) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
incgrp | Incgrp | Nobs |
---|---|---|
A_MD60 | Above 60% of median equivalised income | 12563 |
B_MD60 | Below 60% of median equivalised income | 12563 |
TOTAL | Total | 12563 |
%>%
ilc_mded01 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
PC | Percentage | 37689 |
%>%
ilc_mded01 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
ilc_mded01 group_by(time) %>%
summarise(Nobs = n()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
ilc_mded01 filter(hhtyp == "TOTAL",
%in% c("2018")) %>%
time left_join(geo, by = "geo") %>%
select(geo, Geo, incgrp, values) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
spread(incgrp, values) %>%
arrange(-TOTAL) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {