Business enterprise R&D personnel in high-tech sectors - NACE Rev. 2 - htec_sti_pers2

Data - Eurostat

nace_r2

Code
htec_sti_pers2 %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
nace_r2 Nace_r2 Nobs
TOTAL Total - all NACE activities 2823
G-N Services of the business economy 2005
C Manufacturing 1765
C_HTC High-technology manufacturing 1714
C_HTC_M Medium high-technology manufacturing 1682
C_LTC Low-technology manufacturing 1610
C_LTC_M Medium low-technology manufacturing 1501

unit

Code
htec_sti_pers2 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
unit Unit Nobs
FTE Full-time equivalent (FTE) 7040
HC Head count 6060

prof_pos

Code
htec_sti_pers2 %>%
  left_join(prof_pos, by = "prof_pos") %>%
  group_by(prof_pos, Prof_pos) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
prof_pos Prof_pos Nobs
TOTAL Total 6584
RSE Researchers 6516

geo

Code
htec_sti_pers2 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
htec_sti_pers2 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2023 183
2022 618
2021 789
2020 795
2019 902
2018 719
2017 985
2016 744
2015 921
2014 667
2013 928
2012 747
2011 921
2010 724
2009 788
2008 665
2007 441
2006 308
2005 255