Business enterprise R&D expenditure in high-tech sectors - NACE Rev. 2 - htec_sti_exp2

Data - Eurostat

nace_r2

Code
htec_sti_exp2 %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
nace_r2 Nace_r2 Nobs
TOTAL Total - all NACE activities 1532
C Manufacturing 1152
C_HTC High-technology manufacturing 1136
C_HTC_M Medium high-technology manufacturing 1114
G-N Services of the business economy 1086
C_LTC Low-technology manufacturing 1056
C_LTC_M Medium low-technology manufacturing 1000

unit

Code
htec_sti_exp2 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
unit Unit Nobs
MIO_EUR Million euro 4038
PC_TOT Percentage of total 4038

geo

Code
htec_sti_exp2 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
htec_sti_exp2 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2023 84
2022 360
2021 520
2020 498
2019 576
2018 496
2017 576
2016 492
2015 540
2014 438
2013 514
2012 456
2011 524
2010 464
2009 496
2008 422
2007 282
2006 182
2005 156