Business enterprise R&D expenditure in high-tech sectors - NACE Rev. 2 - htec_sti_exp2

Data - Eurostat

nace_r2

Code
htec_sti_exp2 %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
nace_r2 Nace_r2 Nobs
TOTAL Total - all NACE activities 1554
C Manufacturing 1218
C_HTC High-technology manufacturing 1200
C_HTC_M Medium high-technology manufacturing 1172
G-N Services of the business economy 1150
C_LTC Low-technology manufacturing 1106
C_LTC_M Medium low-technology manufacturing 1054

unit

Code
htec_sti_exp2 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
unit Unit Nobs
MIO_EUR Million euro 4227
PC_TOT Percentage of total 4227

geo

Code
htec_sti_exp2 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
htec_sti_exp2 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2023 460
2022 368
2021 520
2020 498
2019 574
2018 496
2017 574
2016 492
2015 538
2014 438
2013 514
2012 456
2011 524
2010 464
2009 496
2008 422
2007 282
2006 182
2005 156