Business enterprise R&D expenditure in high-tech sectors - NACE Rev. 2 - htec_sti_exp2

Data - Eurostat

nace_r2

Code
htec_sti_exp2 %>%
  left_join(nace_r2, by = "nace_r2") %>%
  group_by(nace_r2, Nace_r2) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
nace_r2 Nace_r2 Nobs
TOTAL Total - all NACE activities 1552
G-N Services of the business economy 1090
C Manufacturing 1002
C_HTC High-technology manufacturing 992
C_HTC_M Medium high-technology manufacturing 972
C_LTC Low-technology manufacturing 928
C_LTC_M Medium low-technology manufacturing 872

unit

Code
htec_sti_exp2 %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  print_table_conditional
unit Unit Nobs
MIO_EUR Million euro 3704
PC_TOT Percentage of total 3704

geo

Code
htec_sti_exp2 %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
htec_sti_exp2 %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()
time Nobs
2023 122
2022 328
2021 438
2020 490
2019 534
2018 466
2017 524
2016 452
2015 516
2014 410
2013 468
2012 428
2011 446
2010 426
2009 436
2008 362
2007 244
2006 172
2005 146