Code
%>%
hbs_str_t226 left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
Data - Eurostat
%>%
hbs_str_t226 left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
%>%
hbs_str_t226 filter(nchar(coicop) == 4) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
coicop | Coicop | Nobs |
---|---|---|
CP01 | Food and non-alcoholic beverages | 483 |
CP02 | Alcoholic beverages, tobacco and narcotics | 483 |
CP03 | Clothing and footwear | 483 |
CP04 | Housing, water, electricity, gas and other fuels | 483 |
CP05 | Furnishings, household equipment and routine household maintenance | 483 |
CP06 | Health | 483 |
CP07 | Transport | 483 |
CP08 | Communications | 483 |
CP09 | Recreation and culture | 483 |
CP10 | Education | 480 |
CP11 | Restaurants and hotels | 483 |
CP12 | Miscellaneous goods and services | 483 |
%>%
hbs_str_t226 filter(nchar(coicop) == 5) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
%>%
hbs_str_t226 filter(nchar(coicop) == 6) %>%
left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
%>%
hbs_str_t226 left_join(deg_urb, by = "deg_urb") %>%
group_by(deg_urb, Deg_urb) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
deg_urb | Deg_urb | Nobs |
---|---|---|
DEG1 | Cities | 9214 |
DEG2 | Towns and suburbs | 9179 |
DEG3 | Rural areas | 9026 |
UNK | Unknown | 708 |
%>%
hbs_str_t226 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
hbs_str_t226 group_by(time) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
time | Nobs |
---|---|
1988 | 1449 |
1994 | 1578 |
1999 | 1925 |
2005 | 5403 |
2010 | 7834 |
2015 | 5582 |
2020 | 4356 |