Code
%>%
hbs_exp_t121 left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
Data - Eurostat
%>%
hbs_exp_t121 left_join(coicop, by = "coicop") %>%
group_by(coicop, Coicop) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
%>%
hbs_exp_t121 left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
unit | Unit | Nobs |
---|---|---|
PPS_HH | Purchasing power standard (PPS) per household | 30321 |
%>%
hbs_exp_t121 left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
hbs_exp_t121 group_by(time) %>%
summarise(Nobs = n()) %>%
print_table_conditional()
time | Nobs |
---|---|
1988 | 1307 |
1994 | 2326 |
1999 | 2505 |
2005 | 6109 |
2010 | 7586 |
2015 | 5928 |
2020 | 4560 |
%>%
hbs_exp_t121 filter(time == "2015",
%in% c("CP0722", "CP072")) coicop
# # A tibble: 68 × 6
# freq coicop unit geo time values
# <chr> <chr> <chr> <chr> <chr> <dbl>
# 1 A CP072 PPS_HH AT 2015 2613
# 2 A CP072 PPS_HH BE 2015 2368
# 3 A CP072 PPS_HH BG 2015 646
# 4 A CP072 PPS_HH CY 2015 2811
# 5 A CP072 PPS_HH CZ 2015 1060
# 6 A CP072 PPS_HH DE 2015 2128
# 7 A CP072 PPS_HH DK 2015 1838
# 8 A CP072 PPS_HH EE 2015 856
# 9 A CP072 PPS_HH EL 2015 1441
# 10 A CP072 PPS_HH ES 2015 2147
# # ℹ 58 more rows