Quarterly non-financial accounts for general government

Data - Eurostat

Info

LAST_DOWNLOAD

Code
tibble(DOWNLOAD_TIME = as.Date(file.info("~/iCloud/website/data/eurostat/gov_10q_ggnfa.RData")$mtime)) %>%
  print_table_conditional()
DOWNLOAD_TIME
2025-10-11

LAST_COMPILE

LAST_COMPILE
2025-10-11

Last

Code
gov_10q_ggnfa %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  head(1) %>%
  print_table_conditional()
time Nobs
2025Q1 14994

unit

Code
gov_10q_ggnfa %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
unit Unit Nobs
MIO_NAC Million units of national currency 503571
MIO_EUR Million euro 503471
PC_GDP Percentage of gross domestic product (GDP) 501158

sector

Code
gov_10q_ggnfa %>%
  left_join(sector, by = "sector") %>%
  group_by(sector, Sector) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
sector Sector Nobs
S13 General government 647218
S1312 State government 258312
S1314 Social security funds 200583
S1311 Central government 198360
S1313 Local government 198336
S212 Institutions of the EU 5391

sector

Code
gov_10q_ggnfa %>%
  left_join(s_adj, by = "s_adj") %>%
  group_by(s_adj, S_adj) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
s_adj S_adj Nobs
NSA Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) 1287304
SCA Seasonally and calendar adjusted data 197184
SA Seasonally adjusted data, not calendar adjusted data 18876
TC Trend cycle data 4836

na_item

All

Code
gov_10q_ggnfa %>%
  left_join(na_item, by = "na_item") %>%
  group_by(na_item, Na_item) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

geo

Code
gov_10q_ggnfa %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, everything()) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

time

Code
gov_10q_ggnfa %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(desc(time)) %>%
  print_table_conditional()

EA-19, Deficit

Code
gov_10q_ggnfa %>%
  filter(time %in% c("2022Q2", "2022Q1"),
         sector == "S13",
         unit == "PC_GDP",
         na_item == "B9",
         s_adj == "NSA") %>%
  left_join(geo, by = "geo") %>%
  select_if(~ n_distinct(.) > 1) %>%
  spread(time, values) %>%
  mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
         Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
  select(Flag, Geo, geo, everything()) %>%
  arrange(`2022Q2`) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}

Deficit

All

Code
gov_10q_ggnfa %>%
  filter(sector == "S13",
         unit == "PC_GDP",
         na_item == "B9",
         geo %in% c("FR", "DE", "IT", "ES", "NL"),
         s_adj == "NSA") %>%
  left_join(geo, by = "geo") %>%
  quarter_to_date() %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values / 100) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Deficit") +
  geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + add_5flags +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-10, 260, 1),
                     labels = scales::percent_format(acc = 1)) +
  scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 2), "-01-01")),
               labels = date_format("%Y"))

2000-

Code
gov_10q_ggnfa %>%
  filter(sector == "S13",
         unit == "PC_GDP",
         na_item == "B9",
         geo %in% c("FR", "DE", "IT", "ES", "NL"),
         s_adj == "NSA") %>%
  left_join(geo, by = "geo") %>%
  quarter_to_date() %>%
  left_join(colors, by = c("Geo" = "country")) %>%
  mutate(values = values / 100) %>%
  filter(date >= as.Date("2000-01-01")) %>%
  ggplot(.) + theme_minimal() + xlab("") + ylab("Deficit") +
  geom_line(aes(x = date, y = values, color = color)) +
  scale_color_identity() + add_5flags +
  theme(legend.position = c(0.2, 0.85),
        legend.title = element_blank()) +
  scale_y_continuous(breaks = 0.01*seq(-100, 260, 1),
                     labels = scales::percent_format(acc = 1)) +
  scale_x_date(breaks = as.Date(paste0(seq(1700, 2100, 2), "-01-01")),
               labels = date_format("%Y"))