Code
tibble(DOWNLOAD_TIME = as.Date(file.info("~/iCloud/website/data/eurostat/gov_10a_taxag.RData")$mtime)) %>%
print_table_conditional()
DOWNLOAD_TIME |
---|
2024-12-29 |
Data - Eurostat
tibble(DOWNLOAD_TIME = as.Date(file.info("~/iCloud/website/data/eurostat/gov_10a_taxag.RData")$mtime)) %>%
print_table_conditional()
DOWNLOAD_TIME |
---|
2024-12-29 |
%>%
gov_10a_taxag group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2023 | 82190 |
%>%
gov_10a_taxag left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
MIO_EUR | Million euro | 601712 |
PC_GDP | Percentage of gross domestic product (GDP) | 601712 |
MIO_NAC | Million units of national currency | 601680 |
PC_TOT | Percentage of total | 594224 |
%>%
gov_10a_taxag left_join(sector, by = "sector") %>%
group_by(sector, Sector) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
sector | Sector | Nobs |
---|---|---|
S212 | Institutions of the EU | 349226 |
S1312 | State government | 346492 |
S1313 | Local government | 343220 |
S1314 | Social security funds | 342818 |
S1311 | Central government | 341964 |
S13_S212 | General government; institutions of the EU | 337864 |
S13 | General government | 337744 |
%>%
gov_10a_taxag left_join(na_item, by = "na_item") %>%
group_by(na_item, Na_item) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
gov_10a_taxag left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
gov_10a_taxag group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
print_table_conditional()
%>%
gov_10a_taxag filter(sector == "S13",
== "2020",
time == "PC_GDP",
unit %in% c("FR", "DE", "IT")) %>%
geo select_if(~ n_distinct(.) > 1) %>%
left_join(na_item, by = "na_item") %>%
left_join(geo, by = "geo") %>%
select(-geo) %>%
spread(Geo, values) %>%
print_table_conditional()