Harmonised unemployment (1 000) - monthly data - ei_lmhu_m

Data - Eurostat

s_adj

Code
ei_lmhu_m %>%
  left_join(s_adj, by = "s_adj") %>%
  group_by(s_adj, S_adj) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
s_adj S_adj Nobs
SA Seasonally adjusted data, not calendar adjusted data 122553
NSA Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) 120150

indic

Code
ei_lmhu_m %>%
  left_join(indic, by = "indic") %>%
  group_by(indic, Indic) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
indic Indic Nobs
LM-UN-T-TOT Unemployment according to ILO definition - Total 27505
LM-UN-F-TOT Unemployment according to ILO definition - Females 27289
LM-UN-M-TOT Unemployment according to ILO definition - Males 27289
LM-UN-T-GT25 Unemployment according to ILO definition - Over 25 years - Total 26980
LM-UN-T-LE25 Unemployment according to ILO definition - Under 25 years - Total 26940
LM-UN-F-GT25 Unemployment according to ILO definition - Over 25 years - Females 26764
LM-UN-M-GT25 Unemployment according to ILO definition - Over 25 years - Males 26764
LM-UN-F-LE25 Unemployment according to ILO definition - Under 25 years - Females 26586
LM-UN-M-LE25 Unemployment according to ILO definition - Under 25 years - Males 26586

geo

Code
ei_lmhu_m %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

unit

Code
ei_lmhu_m %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
unit Unit Nobs
THS_PER Thousand persons 242703