Code
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/eurostat/ei_bsrt_m_r2.RData")$mtime)) %>%
print_table_conditional()| LAST_DOWNLOAD |
|---|
| 2025-11-15 |
Data - Eurostat
tibble(LAST_DOWNLOAD = as.Date(file.info("~/iCloud/website/data/eurostat/ei_bsrt_m_r2.RData")$mtime)) %>%
print_table_conditional()| LAST_DOWNLOAD |
|---|
| 2025-11-15 |
| LAST_COMPILE |
|---|
| 2025-11-16 |
ei_bsrt_m_r2 %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()| time | Nobs |
|---|---|
| 2025M10 | 448 |
ei_bsrt_m_r2 %>%
left_join(indic, by = "indic") %>%
group_by(indic, Indic) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| indic | Indic | Nobs |
|---|---|---|
| BS-RPBS | Business activity (sales) development over the past 3 months | 22860 |
| BS-RAS | Volume of stocks currently hold | 22824 |
| BS-RCI | Retail confidence indicator | 22824 |
| BS-REBS | Business activity expectations over the next 3 months | 22824 |
| BS-ROP | Expectations of the number of orders placed with suppliers over the next 3 months | 22696 |
| BS-REM | Employment expectations over the next 3 months | 22592 |
| BS-RPE | Price expectations over the next 3 months | 18398 |
ei_bsrt_m_r2 %>%
left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
{if (is_html_output()) print_table(.) else .}| s_adj | S_adj | Nobs |
|---|---|---|
| SA | Seasonally adjusted data, not calendar adjusted data | 77583 |
| NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 77435 |
ei_bsrt_m_r2 %>%
left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .}ei_bsrt_m_r2 %>%
group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
{if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}