Code
tibble(DOWNLOAD_TIME = as.Date(file.info("~/iCloud/website/data/eurostat/ei_bsco_m.RData")$mtime)) %>%
print_table_conditional()
DOWNLOAD_TIME |
---|
2024-10-09 |
Data - Eurostat
tibble(DOWNLOAD_TIME = as.Date(file.info("~/iCloud/website/data/eurostat/ei_bsco_m.RData")$mtime)) %>%
print_table_conditional()
DOWNLOAD_TIME |
---|
2024-10-09 |
%>%
ei_bsco_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
head(1) %>%
print_table_conditional()
time | Nobs |
---|---|
2024M09 | 792 |
load_data("eurostat/indic_fr.RData")
%>%
ei_bsco_m left_join(indic, by = "indic") %>%
group_by(indic, Indic) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
indic | Indic | Nobs |
---|---|---|
BS-FS-LY | Situation financière au cours des 12 derniers mois | 23804 |
BS-FS-NY | Situation financière au cours des 12 prochains mois | 23804 |
BS-GES-LY | Situation économique générale au cours des 12 derniers mois | 23804 |
BS-GES-NY | Situation économique générale au cours des 12 prochains mois | 23804 |
BS-UE-NY | Evolution probable du chômage au cours des 12 prochains mois | 23759 |
BS-MP-PR | La conjoncture économique est adéquate pour les achats importants | 23719 |
BS-PT-LY | Evolution des prix au cours des 12 derniers mois | 23557 |
BS-PT-NY | Evolution probable des prix au cours des 12 prochains mois | 23557 |
BS-SFSH | Situation financière actuelle du ménage | 23555 |
BS-SV-NY | Epargne au cours des 12 prochains mois | 23547 |
BS-CSMCI | Consommateur, indicateur de confiance | 23442 |
BS-MP-NY | Achats importants prévus dans les 12 prochains mois | 23442 |
load_data("eurostat/indic.RData")
%>%
ei_bsco_m left_join(indic, by = "indic") %>%
group_by(indic, Indic) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
indic | Indic | Nobs |
---|---|---|
BS-FS-LY | Financial situation over the last 12 months | 23804 |
BS-FS-NY | Financial situation over the next 12 months | 23804 |
BS-GES-LY | General economic situation over the last 12 months | 23804 |
BS-GES-NY | General economic situation over the next 12 months | 23804 |
BS-UE-NY | Unemployment expectations over the next 12 months | 23759 |
BS-MP-PR | The current economic situation is adequate to make major purchases | 23719 |
BS-PT-LY | Price trends over the last 12 months | 23557 |
BS-PT-NY | Price trends over the next 12 months | 23557 |
BS-SFSH | Statement on financial situation of household | 23555 |
BS-SV-NY | Savings over the next 12 months | 23547 |
BS-CSMCI | Consumer confidence indicator | 23442 |
BS-MP-NY | Major purchases over the next 12 months | 23442 |
%>%
ei_bsco_m left_join(s_adj, by = "s_adj") %>%
group_by(s_adj, S_adj) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
s_adj | S_adj | Nobs |
---|---|---|
NSA | Unadjusted data (i.e. neither seasonally adjusted nor calendar adjusted data) | 142410 |
SA | Seasonally adjusted data, not calendar adjusted data | 141384 |
%>%
ei_bsco_m left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
mutate(Flag = gsub(" ", "-", str_to_lower(Geo)),
Flag = paste0('<img src="../../bib/flags/vsmall/', Flag, '.png" alt="Flag">')) %>%
select(Flag, everything()) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F, escape = F) else .} {
%>%
ei_bsco_m group_by(time) %>%
summarise(Nobs = n()) %>%
arrange(desc(time)) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
ei_bsco_m filter(indic == "BS-CSMCI",
%in% c("FR", "DE", "IT"),
geo == "NSA") %>%
s_adj select(geo, time, values) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Consumer confidence indicator") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_3flags + theme(legend.position = "none") +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-2000, 2000, 5))
%>%
ei_bsco_m filter(indic == "BS-CSMCI",
%in% c("FR", "DE", "IT"),
geo == "NSA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("1995-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Consumer confidence indicator") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_3flags + theme(legend.position = "none") +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-2000, 2000, 5))
%>%
ei_bsco_m filter(indic == "BS-CSMCI",
%in% c("FR", "DE", "IT"),
geo == "NSA") %>%
s_adj select(geo, time, values) %>%
group_by(geo) %>%
left_join(geo, by = "geo") %>%
mutate(Geo = ifelse(geo == "DE", "Germany", Geo)) %>%
%>%
month_to_date filter(date >= as.Date("2000-01-01")) %>%
left_join(colors, by = c("Geo" = "country")) %>%
ggplot() + ylab("Consumer confidence indicator") + xlab("") + theme_minimal() +
geom_line(aes(x = date, y = values, color = color)) +
scale_color_identity() + add_3flags + theme(legend.position = "none") +
scale_x_date(breaks = seq(1920, 2025, 5) %>% paste0("-01-01") %>% as.Date,
labels = date_format("%Y")) +
scale_y_continuous(breaks = seq(-2000, 2000, 5))