earn_ses_monthly %>%
filter(nace_r2 == "B-N",
isco08 == "TOTAL",
worktime == "TOTAL",
age == "TOTAL",
sex == "T",
indic_se == "MEAN_E_EUR",
time %in% c("2018")) %>%
left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS0, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
labels = scales::dollar_format(accuracy = 1, prefix = "", suffix = "€"),
breaks = seq(0, 20000, 1000),
values = c(0, 0.1, 0.2, 0.3, 0.4, 0.5, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "Avg Wage")