Code
%>%
demo_r_mlifexp left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
YR | Year | 3218021 |
Data - Eurostat
%>%
demo_r_mlifexp left_join(unit, by = "unit") %>%
group_by(unit, Unit) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
unit | Unit | Nobs |
---|---|---|
YR | Year | 3218021 |
%>%
demo_r_mlifexp left_join(sex, by = "sex") %>%
group_by(sex, Sex) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) print_table(.) else .} {
sex | Sex | Nobs |
---|---|---|
T | Total | 1072731 |
F | Females | 1072645 |
M | Males | 1072645 |
%>%
demo_r_mlifexp left_join(age, by = "age") %>%
group_by(age, Age) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
demo_r_mlifexp left_join(geo, by = "geo") %>%
group_by(geo, Geo) %>%
summarise(Nobs = n()) %>%
arrange(-Nobs) %>%
if (is_html_output()) datatable(., filter = 'top', rownames = F) else .} {
%>%
demo_r_mlifexp filter(time == "2018",
nchar(geo) == 4,
== "T",
sex == "Y1") %>%
age left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
direction = -1,
breaks = seq(70, 90, 2),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.9, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "Life Expectancy (Men and Women)")
%>%
demo_r_mlifexp filter(time == "2018",
nchar(geo) == 4,
== "M",
sex == "Y1") %>%
age left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
direction = -1,
breaks = seq(70, 90, 2),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.9, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "Life Expectancy (Men)")
%>%
demo_r_mlifexp filter(time == "2018",
nchar(geo) == 4,
== "F",
sex == "Y1") %>%
age left_join(geo, by = "geo") %>%
select(geo, Geo, values) %>%
right_join(europe_NUTS2, by = "geo") %>%
filter(long >= -15, lat >= 33) %>%
ggplot(., aes(x = long, y = lat, group = group, fill = values)) +
geom_polygon() + coord_map() +
scale_fill_viridis_c(na.value = "white",
direction = -1,
breaks = seq(70, 90, 2),
values = c(0, 0.1, 0.3, 0.5, 0.7, 0.9, 1)) +
theme_void() + theme(legend.position = c(0.25, 0.85)) +
labs(fill = "Life Expectancy (Women)")