Population by sex, age group, size of household and NUTS 3 regions - cens_01rhsize

Data - Eurostat

n_person

Code
cens_01rhsize %>%
  left_join(n_person, by = "n_person") %>%
  group_by(n_person, N_person) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
n_person N_person Nobs
2 2 persons 48161
3 3 persons 48143
4 4 persons 48119
5 5 persons 48094
GE6 6 persons or more 48044
1 1 person 45503
UNK Unknown 2460

sex

Code
cens_01rhsize %>%
  left_join(sex, by = "sex") %>%
  group_by(sex, Sex) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
sex Sex Nobs
T Total 96567
F Females 95984
M Males 95973

age

Code
cens_01rhsize %>%
  left_join(age, by = "age") %>%
  group_by(age, Age) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

unit

Code
cens_01rhsize %>%
  left_join(unit, by = "unit") %>%
  group_by(unit, Unit) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
unit Unit Nobs
PER Person 288524

geo

Code
cens_01rhsize %>%
  left_join(geo, by = "geo") %>%
  group_by(geo, Geo) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) datatable(., filter = 'top', rownames = F) else .}

time

Code
cens_01rhsize %>%
  group_by(time) %>%
  summarise(Nobs = n()) %>%
  arrange(-Nobs) %>%
  {if (is_html_output()) print_table(.) else .}
time Nobs
2001 288524